【LeetCode & 剑指offer刷题】动态规划与贪婪法题5:Maximum Product Subarray
【LeetCode & 剑指offer 刷题笔记】目录(持续更新中...)
Maximum Product Subarray
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
/*
问题:求最大子数组乘积
方法:动态规划
两个dp数组,其中f[i]和g[i]分别表示包含nums[i](以nums[i]结尾)时的最大和最小子数组乘积,
初始化时f[0]和g[0]都初始化为nums[0],其余都初始化为0。
从数组的第二个数字开始遍历,此时的最大值和最小值只会在这三个数字之间产生,
即f[i-1]*nums[i],g[i-1]*nums[i],和nums[i]。
所以我们用三者中的最大值来更新f[i],用最小值来更新g[i],然后用f[i]来更新结果res即可
*/
class Solution
{
public:
int maxProduct(vector<int>& nums)
{
if(nums.empty()) return 0;
int res = nums[0], n = nums.size();
vector<int> f(n), g(n); //分配空间,初始化
f[0] = nums[0];
g[0] = nums[0];
for (int i = 1; i < n; i++) //从a[1]开始遍历
{
f[i] = max(max(f[i - 1] * nums[i], g[i - 1] * nums[i]), nums[i]); //最大数更新
g[i] = min(min(f[i - 1] * nums[i], g[i - 1] * nums[i]), nums[i]); //最小数更新
res = max(res, f[i]); //结果更新
}
return res;
}
};
/*
空间优化,用两个变量代替数组dp
*/
class Solution
{
public:
int maxProduct(vector<int>& nums)
{
if (nums.empty()) return 0;
int res = nums[0], mn = nums[0], mx = nums[0];
for (int i = 1; i < nums.size(); ++i)
{
int tmax = mx, tmin = mn;//上一次的最小值和最大值
mx = max(max(nums[i], tmax * nums[i]), tmin * nums[i]);
mn = min(min(nums[i], tmax * nums[i]), tmin * nums[i]);
res = max(res, mx);
}
return res;
}
};