转自:https://learnxinyminutes.com/docs/python3/

Python was created by Guido van Rossum in the early 90s. It is now one of the most popular languages in existence. I fell in love with Python for its syntactic clarity. It’s basically executable pseudocode.

Feedback would be highly appreciated! You can reach me at @louiedinh or louiedinh [at] [google’s email service]

Note: This article applies to Python 3 specifically. Check out here if you want to learn the old Python 2.7

# Single line comments start with a number symbol.

""" Multiline strings can be written
    using three "s, and are often used
    as documentation.
"""

####################################################
## 1. Primitive Datatypes and Operators
####################################################

# You have numbers
3  # => 3

# Math is what you would expect
1 + 1   # => 2
8 - 1   # => 7
10 * 2  # => 20
35 / 5  # => 7.0

# Result of integer division truncated down both for positive and negative.
5 // 3       # => 1
5.0 // 3.0   # => 1.0 # works on floats too
-5 // 3      # => -2
-5.0 // 3.0  # => -2.0

# The result of division is always a float
10.0 / 3  # => 3.3333333333333335

# Modulo operation
7 % 3  # => 1

# Exponentiation (x**y, x to the yth power)
2**3  # => 8

# Enforce precedence with parentheses
(1 + 3) * 2  # => 8

# Boolean values are primitives (Note: the capitalization)
True
False

# negate with not
not True   # => False
not False  # => True

# Boolean Operators
# Note "and" and "or" are case-sensitive
True and False  # => False
False or True   # => True

# Note using Bool operators with ints
# False is 0 and True is 1
# Don't mix up with bool(ints) and bitwise and/or (&,|)
0 and 2     # => 0
-5 or 0     # => -5
0 == False  # => True
2 == True   # => False
1 == True   # => True
-5 != False != True #=> True

# Equality is ==
1 == 1  # => True
2 == 1  # => False

# Inequality is !=
1 != 1  # => False
2 != 1  # => True

# More comparisons
1 < 10  # => True
1 > 10  # => False
2 <= 2  # => True
2 >= 2  # => True

# Comparisons can be chained!
1 < 2 < 3  # => True
2 < 3 < 2  # => False

# (is vs. ==) is checks if two variables refer to the same object, but == checks
# if the objects pointed to have the same values.
a = [1, 2, 3, 4]  # Point a at a new list, [1, 2, 3, 4]
b = a             # Point b at what a is pointing to
b is a            # => True, a and b refer to the same object
b == a            # => True, a's and b's objects are equal
b = [1, 2, 3, 4]  # Point b at a new list, [1, 2, 3, 4]
b is a            # => False, a and b do not refer to the same object
b == a            # => True, a's and b's objects are equal

# Strings are created with " or '
"This is a string."
'This is also a string.'

# Strings can be added too! But try not to do this.
"Hello " + "world!"  # => "Hello world!"
# String literals (but not variables) can be concatenated without using '+'
"Hello " "world!"    # => "Hello world!"

# A string can be treated like a list of characters
"This is a string"[0]  # => 'T'

# You can find the length of a string
len("This is a string")  # => 16

# .format can be used to format strings, like this:
"{} can be {}".format("Strings", "interpolated")  # => "Strings can be interpolated"

# You can repeat the formatting arguments to save some typing.
"{0} be nimble, {0} be quick, {0} jump over the {1}".format("Jack", "candle stick")
# => "Jack be nimble, Jack be quick, Jack jump over the candle stick"

# You can use keywords if you don't want to count.
"{name} wants to eat {food}".format(name="Bob", food="lasagna")  # => "Bob wants to eat lasagna"

# If your Python 3 code also needs to run on Python 2.5 and below, you can also
# still use the old style of formatting:
"%s can be %s the %s way" % ("Strings", "interpolated", "old")  # => "Strings can be interpolated the old way"


# None is an object
None  # => None

# Don't use the equality "==" symbol to compare objects to None
# Use "is" instead. This checks for equality of object identity.
"etc" is None  # => False
None is None   # => True

# None, 0, and empty strings/lists/dicts/tuples all evaluate to False.
# All other values are True
bool(0)   # => False
bool("")  # => False
bool([])  # => False
bool({})  # => False
bool(())  # => False

####################################################
## 2. Variables and Collections
####################################################

# Python has a print function
print("I'm Python. Nice to meet you!")  # => I'm Python. Nice to meet you!

# By default the print function also prints out a newline at the end.
# Use the optional argument end to change the end string.
print("Hello, World", end="!")  # => Hello, World!

# Simple way to get input data from console
input_string_var = input("Enter some data: ") # Returns the data as a string
# Note: In earlier versions of Python, input() method was named as raw_input()

# There are no declarations, only assignments.
# Convention is to use lower_case_with_underscores
some_var = 5
some_var  # => 5

# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_unknown_var  # Raises a NameError

# if can be used as an expression
# Equivalent of C's '?:' ternary operator
"yahoo!" if 3 > 2 else 2  # => "yahoo!"

# Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6]

# Add stuff to the end of a list with append
li.append(1)    # li is now [1]
li.append(2)    # li is now [1, 2]
li.append(4)    # li is now [1, 2, 4]
li.append(3)    # li is now [1, 2, 4, 3]
# Remove from the end with pop
li.pop()        # => 3 and li is now [1, 2, 4]
# Let's put it back
li.append(3)    # li is now [1, 2, 4, 3] again.

# Access a list like you would any array
li[0]   # => 1
# Look at the last element
li[-1]  # => 3

# Looking out of bounds is an IndexError
li[4]  # Raises an IndexError

# You can look at ranges with slice syntax.
# The start index is included, the end index is not
# (It's a closed/open range for you mathy types.)
li[1:3]   # => [2, 4]
# Omit the beginning and return the list
li[2:]    # => [4, 3]
# Omit the end and return the list
li[:3]    # => [1, 2, 4]
# Select every second entry
li[::2]   # =>[1, 4]
# Return a reversed copy of the list
li[::-1]  # => [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]

# Make a one layer deep copy using slices
li2 = li[:]  # => li2 = [1, 2, 4, 3] but (li2 is li) will result in false.

# Remove arbitrary elements from a list with "del"
del li[2]  # li is now [1, 2, 3]

# Remove first occurrence of a value
li.remove(2)  # li is now [1, 3]
li.remove(2)  # Raises a ValueError as 2 is not in the list

# Insert an element at a specific index
li.insert(1, 2)  # li is now [1, 2, 3] again

# Get the index of the first item found matching the argument
li.index(2)  # => 1
li.index(4)  # Raises a ValueError as 4 is not in the list

# You can add lists
# Note: values for li and for other_li are not modified.
li + other_li  # => [1, 2, 3, 4, 5, 6]

# Concatenate lists with "extend()"
li.extend(other_li)  # Now li is [1, 2, 3, 4, 5, 6]

# Check for existence in a list with "in"
1 in li  # => True

# Examine the length with "len()"
len(li)  # => 6


# Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0]      # => 1
tup[0] = 3  # Raises a TypeError

# Note that a tuple of length one has to have a comma after the last element but
# tuples of other lengths, even zero, do not.
type((1))   # => <class 'int'>
type((1,))  # => <class 'tuple'>
type(())    # => <class 'tuple'>

# You can do most of the list operations on tuples too
len(tup)         # => 3
tup + (4, 5, 6)  # => (1, 2, 3, 4, 5, 6)
tup[:2]          # => (1, 2)
2 in tup         # => True

# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3)  # a is now 1, b is now 2 and c is now 3
# You can also do extended unpacking
a, *b, c = (1, 2, 3, 4)  # a is now 1, b is now [2, 3] and c is now 4
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
# Now look how easy it is to swap two values
e, d = d, e  # d is now 5 and e is now 4


# Dictionaries store mappings from keys to values
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}

# Note keys for dictionaries have to be immutable types. This is to ensure that
# the key can be converted to a constant hash value for quick look-ups.
# Immutable types include ints, floats, strings, tuples.
invalid_dict = {[1,2,3]: "123"}  # => Raises a TypeError: unhashable type: 'list'
valid_dict = {(1,2,3):[1,2,3]}   # Values can be of any type, however.

# Look up values with []
filled_dict["one"]  # => 1

# Get all keys as an iterable with "keys()". We need to wrap the call in list()
# to turn it into a list. We'll talk about those later.  Note - Dictionary key
# ordering is not guaranteed. Your results might not match this exactly.
list(filled_dict.keys())  # => ["three", "two", "one"]


# Get all values as an iterable with "values()". Once again we need to wrap it
# in list() to get it out of the iterable. Note - Same as above regarding key
# ordering.
list(filled_dict.values())  # => [3, 2, 1]


# Check for existence of keys in a dictionary with "in"
"one" in filled_dict  # => True
1 in filled_dict      # => False

# Looking up a non-existing key is a KeyError
filled_dict["four"]  # KeyError

# Use "get()" method to avoid the KeyError
filled_dict.get("one")      # => 1
filled_dict.get("four")     # => None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4)   # => 1
filled_dict.get("four", 4)  # => 4

# "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5)  # filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6)  # filled_dict["five"] is still 5

# Adding to a dictionary
filled_dict.update({"four":4})  # => {"one": 1, "two": 2, "three": 3, "four": 4}
filled_dict["four"] = 4         # another way to add to dict

# Remove keys from a dictionary with del
del filled_dict["one"]  # Removes the key "one" from filled dict

# From Python 3.5 you can also use the additional unpacking options
{'a': 1, **{'b': 2}}  # => {'a': 1, 'b': 2}
{'a': 1, **{'a': 2}}  # => {'a': 2}



# Sets store ... well sets
empty_set = set()
# Initialize a set with a bunch of values. Yeah, it looks a bit like a dict. Sorry.
some_set = {1, 1, 2, 2, 3, 4}  # some_set is now {1, 2, 3, 4}

# Similar to keys of a dictionary, elements of a set have to be immutable.
invalid_set = {[1], 1}  # => Raises a TypeError: unhashable type: 'list'
valid_set = {(1,), 1}

# Add one more item to the set
filled_set = some_set
filled_set.add(5)  # filled_set is now {1, 2, 3, 4, 5}

# Do set intersection with &
other_set = {3, 4, 5, 6}
filled_set & other_set  # => {3, 4, 5}

# Do set union with |
filled_set | other_set  # => {1, 2, 3, 4, 5, 6}

# Do set difference with -
{1, 2, 3, 4} - {2, 3, 5}  # => {1, 4}

# Do set symmetric difference with ^
{1, 2, 3, 4} ^ {2, 3, 5}  # => {1, 4, 5}

# Check if set on the left is a superset of set on the right
{1, 2} >= {1, 2, 3} # => False

# Check if set on the left is a subset of set on the right
{1, 2} <= {1, 2, 3} # => True

# Check for existence in a set with in
2 in filled_set   # => True
10 in filled_set  # => False



####################################################
## 3. Control Flow and Iterables
####################################################

# Let's just make a variable
some_var = 5

# Here is an if statement. Indentation is significant in Python!
# Convention is to use four spaces, not tabs.
# This prints "some_var is smaller than 10"
if some_var > 10:
    print("some_var is totally bigger than 10.")
elif some_var < 10:    # This elif clause is optional.
    print("some_var is smaller than 10.")
else:                  # This is optional too.
    print("some_var is indeed 10.")


"""
For loops iterate over lists
prints:
    dog is a mammal
    cat is a mammal
    mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
    # You can use format() to interpolate formatted strings
    print("{} is a mammal".format(animal))

"""
"range(number)" returns an iterable of numbers
from zero to the given number
prints:
    0
    1
    2
    3
"""
for i in range(4):
    print(i)

"""
"range(lower, upper)" returns an iterable of numbers
from the lower number to the upper number
prints:
    4
    5
    6
    7
"""
for i in range(4, 8):
    print(i)

"""
"range(lower, upper, step)" returns an iterable of numbers
from the lower number to the upper number, while incrementing
by step. If step is not indicated, the default value is 1.
prints:
    4
    6
"""
for i in range(4, 8, 2):
    print(i)
"""

While loops go until a condition is no longer met.
prints:
    0
    1
    2
    3
"""
x = 0
while x < 4:
    print(x)
    x += 1  # Shorthand for x = x + 1

# Handle exceptions with a try/except block
try:
    # Use "raise" to raise an error
    raise IndexError("This is an index error")
except IndexError as e:
    pass                 # Pass is just a no-op. Usually you would do recovery here.
except (TypeError, NameError):
    pass                 # Multiple exceptions can be handled together, if required.
else:                    # Optional clause to the try/except block. Must follow all except blocks
    print("All good!")   # Runs only if the code in try raises no exceptions
finally:                 #  Execute under all circumstances
    print("We can clean up resources here")

# Instead of try/finally to cleanup resources you can use a with statement
with open("myfile.txt") as f:
    for line in f:
        print(line)

# Python offers a fundamental abstraction called the Iterable.
# An iterable is an object that can be treated as a sequence.
# The object returned by the range function, is an iterable.

filled_dict = {"one": 1, "two": 2, "three": 3}
our_iterable = filled_dict.keys()
print(our_iterable)  # => dict_keys(['one', 'two', 'three']). This is an object that implements our Iterable interface.

# We can loop over it.
for i in our_iterable:
    print(i)  # Prints one, two, three

# However we cannot address elements by index.
our_iterable[1]  # Raises a TypeError

# An iterable is an object that knows how to create an iterator.
our_iterator = iter(our_iterable)

# Our iterator is an object that can remember the state as we traverse through it.
# We get the next object with "next()".
next(our_iterator)  # => "one"

# It maintains state as we iterate.
next(our_iterator)  # => "two"
next(our_iterator)  # => "three"

# After the iterator has returned all of its data, it raises a StopIteration exception
next(our_iterator)  # Raises StopIteration

# You can grab all the elements of an iterator by calling list() on it.
list(filled_dict.keys())  # => Returns ["one", "two", "three"]


####################################################
## 4. Functions
####################################################

# Use "def" to create new functions
def add(x, y):
    print("x is {} and y is {}".format(x, y))
    return x + y  # Return values with a return statement

# Calling functions with parameters
add(5, 6)  # => prints out "x is 5 and y is 6" and returns 11

# Another way to call functions is with keyword arguments
add(y=6, x=5)  # Keyword arguments can arrive in any order.

# You can define functions that take a variable number of
# positional arguments
def varargs(*args):
    return args

varargs(1, 2, 3)  # => (1, 2, 3)

# You can define functions that take a variable number of
# keyword arguments, as well
def keyword_args(**kwargs):
    return kwargs

# Let's call it to see what happens
keyword_args(big="foot", loch="ness")  # => {"big": "foot", "loch": "ness"}


# You can do both at once, if you like
def all_the_args(*args, **kwargs):
    print(args)
    print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) prints:
    (1, 2)
    {"a": 3, "b": 4}
"""

# When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args)            # equivalent to all_the_args(1, 2, 3, 4)
all_the_args(**kwargs)         # equivalent to all_the_args(a=3, b=4)
all_the_args(*args, **kwargs)  # equivalent to all_the_args(1, 2, 3, 4, a=3, b=4)

# Returning multiple values (with tuple assignments)
def swap(x, y):
    return y, x  # Return multiple values as a tuple without the parenthesis.
                 # (Note: parenthesis have been excluded but can be included)

x = 1
y = 2
x, y = swap(x, y)     # => x = 2, y = 1
# (x, y) = swap(x,y)  # Again parenthesis have been excluded but can be included.

# Function Scope
x = 5

def set_x(num):
    # Local var x not the same as global variable x
    x = num    # => 43
    print(x)   # => 43

def set_global_x(num):
    global x
    print(x)   # => 5
    x = num    # global var x is now set to 6
    print(x)   # => 6

set_x(43)
set_global_x(6)


# Python has first class functions
def create_adder(x):
    def adder(y):
        return x + y
    return adder

add_10 = create_adder(10)
add_10(3)   # => 13

# There are also anonymous functions
(lambda x: x > 2)(3)                  # => True
(lambda x, y: x ** 2 + y ** 2)(2, 1)  # => 5

# There are built-in higher order functions
list(map(add_10, [1, 2, 3]))          # => [11, 12, 13]
list(map(max, [1, 2, 3], [4, 2, 1]))  # => [4, 2, 3]

list(filter(lambda x: x > 5, [3, 4, 5, 6, 7]))  # => [6, 7]

# We can use list comprehensions for nice maps and filters
# List comprehension stores the output as a list which can itself be a nested list
[add_10(i) for i in [1, 2, 3]]         # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5]  # => [6, 7]

# You can construct set and dict comprehensions as well.
{x for x in 'abcddeef' if x not in 'abc'}  # => {'d', 'e', 'f'}
{x: x**2 for x in range(5)}  # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}


####################################################
## 5. Modules
####################################################

# You can import modules
import math
print(math.sqrt(16))  # => 4.0

# You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7))   # => 4.0
print(floor(3.7))  # => 3.0

# You can import all functions from a module.
# Warning: this is not recommended
from math import *

# You can shorten module names
import math as m
math.sqrt(16) == m.sqrt(16)  # => True

# Python modules are just ordinary Python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.

# You can find out which functions and attributes
# are defined in a module.
import math
dir(math)

# If you have a Python script named math.py in the same
# folder as your current script, the file math.py will
# be loaded instead of the built-in Python module.
# This happens because the local folder has priority
# over Python's built-in libraries.


####################################################
## 6. Classes
####################################################

# We use the "class" statement to create a class
class Human:

    # A class attribute. It is shared by all instances of this class
    species = "H. sapiens"

    # Basic initializer, this is called when this class is instantiated.
    # Note that the double leading and trailing underscores denote objects
    # or attributes that are used by Python but that live in user-controlled
    # namespaces. Methods(or objects or attributes) like: __init__, __str__,
    # __repr__ etc. are called special methods (or sometimes called dunder methods)
    # You should not invent such names on your own.
    def __init__(self, name):
        # Assign the argument to the instance's name attribute
        self.name = name

        # Initialize property
        self._age = 0

    # An instance method. All methods take "self" as the first argument
    def say(self, msg):
        print("{name}: {message}".format(name=self.name, message=msg))

    # Another instance method
    def sing(self):
        return 'yo... yo... microphone check... one two... one two...'

    # A class method is shared among all instances
    # They are called with the calling class as the first argument
    @classmethod
    def get_species(cls):
        return cls.species

    # A static method is called without a class or instance reference
    @staticmethod
    def grunt():
        return "*grunt*"

    # A property is just like a getter.
    # It turns the method age() into an read-only attribute of the same name.
    # There's no need to write trivial getters and setters in Python, though.
    @property
    def age(self):
        return self._age

    # This allows the property to be set
    @age.setter
    def age(self, age):
        self._age = age

    # This allows the property to be deleted
    @age.deleter
    def age(self):
        del self._age


# When a Python interpreter reads a source file it executes all its code.
# This __name__ check makes sure this code block is only executed when this
# module is the main program.
if __name__ == '__main__':
    # Instantiate a class
    i = Human(name="Ian")
    i.say("hi")                     # "Ian: hi"
    j = Human("Joel")
    j.say("hello")                  # "Joel: hello"
    # i and j are instances of type Human, or in other words: they are Human objects

    # Call our class method
    i.say(i.get_species())          # "Ian: H. sapiens"
    # Change the shared attribute
    Human.species = "H. neanderthalensis"
    i.say(i.get_species())          # => "Ian: H. neanderthalensis"
    j.say(j.get_species())          # => "Joel: H. neanderthalensis"

    # Call the static method
    print(Human.grunt())            # => "*grunt*"

    # Cannot call static method with instance of object 
    # because i.grunt() will automatically put "self" (the object i) as an argument
    print(i.grunt())                # => TypeError: grunt() takes 0 positional arguments but 1 was given

    # Update the property for this instance
    i.age = 42
    # Get the property
    i.say(i.age)                    # => "Ian: 42"
    j.say(j.age)                    # => "Joel: 0"
    # Delete the property
    del i.age
    # i.age                         # => this would raise an AttributeError


####################################################
## 6.1 Inheritance
####################################################

# Inheritance allows new child classes to be defined that inherit methods and
# variables from their parent class. 

# Using the Human class defined above as the base or parent class, we can
# define a child class, Superhero, which inherits the class variables like
# "species", "name", and "age", as well as methods, like "sing" and "grunt"
# from the Human class, but can also have its own unique properties.

# To take advantage of modularization by file you could place the classes above in their own files,
# say, human.py

# To import functions from other files use the following format
# from "filename-without-extension" import "function-or-class"

from human import Human


# Specify the parent class(es) as parameters to the class definition
class Superhero(Human):

    # If the child class should inherit all of the parent's definitions without
    # any modifications, you can just use the "pass" keyword (and nothing else)
    # but in this case it is commented out to allow for a unique child class:
    # pass

    # Child classes can override their parents' attributes
    species = 'Superhuman'

    # Children automatically inherit their parent class's constructor including
    # its arguments, but can also define additional arguments or definitions
    # and override its methods such as the class constructor.
    # This constructor inherits the "name" argument from the "Human" class and
    # adds the "superpower" and "movie" arguments:
    def __init__(self, name, movie=False,
                 superpowers=["super strength", "bulletproofing"]):

        # add additional class attributes:
        self.fictional = True
        self.movie = movie
        self.superpowers = superpowers

        # The "super" function lets you access the parent class's methods
        # that are overridden by the child, in this case, the __init__ method.
        # This calls the parent class constructor:
        super().__init__(name)

    # override the sing method
    def sing(self):
        return 'Dun, dun, DUN!'

    # add an additional instance method
    def boast(self):
        for power in self.superpowers:
            print("I wield the power of {pow}!".format(pow=power))


if __name__ == '__main__':
    sup = Superhero(name="Tick")

    # Instance type checks
    if isinstance(sup, Human):
        print('I am human')
    if type(sup) is Superhero:
        print('I am a superhero')

    # Get the Method Resolution search Order used by both getattr() and super()
    # This attribute is dynamic and can be updated
    print(Superhero.__mro__)    # => (<class '__main__.Superhero'>,
                                # => <class 'human.Human'>, <class 'object'>)

    # Calls parent method but uses its own class attribute
    print(sup.get_species())    # => Superhuman

    # Calls overridden method
    print(sup.sing())           # => Dun, dun, DUN!

    # Calls method from Human
    sup.say('Spoon')            # => Tick: Spoon

    # Call method that exists only in Superhero
    sup.boast()                 # => I wield the power of super strength!
                                # => I wield the power of bulletproofing!

    # Inherited class attribute
    sup.age = 31
    print(sup.age)              # => 31

    # Attribute that only exists within Superhero
    print('Am I Oscar eligible? ' + str(sup.movie))

####################################################
## 6.2 Multiple Inheritance
####################################################

# Another class definition
# bat.py
class Bat:

    species = 'Baty'

    def __init__(self, can_fly=True):
        self.fly = can_fly

    # This class also has a say method
    def say(self, msg):
        msg = '... ... ...'
        return msg

    # And its own method as well
    def sonar(self):
        return '))) ... ((('

if __name__ == '__main__':
    b = Bat()
    print(b.say('hello'))
    print(b.fly)


# And yet another class definition that inherits from Superhero and Bat
# superhero.py
from superhero import Superhero
from bat import Bat

# Define Batman as a child that inherits from both Superhero and Bat
class Batman(Superhero, Bat):

    def __init__(self, *args, **kwargs):
        # Typically to inherit attributes you have to call super:
        # super(Batman, self).__init__(*args, **kwargs)      
        # However we are dealing with multiple inheritance here, and super()
        # only works with the next base class in the MRO list.
        # So instead we explicitly call __init__ for all ancestors.
        # The use of *args and **kwargs allows for a clean way to pass arguments,
        # with each parent "peeling a layer of the onion".
        Superhero.__init__(self, 'anonymous', movie=True, 
                           superpowers=['Wealthy'], *args, **kwargs)
        Bat.__init__(self, *args, can_fly=False, **kwargs)
        # override the value for the name attribute
        self.name = 'Sad Affleck'

    def sing(self):
        return 'nan nan nan nan nan batman!'


if __name__ == '__main__':
    sup = Batman()

    # Get the Method Resolution search Order used by both getattr() and super().
    # This attribute is dynamic and can be updated
    print(Batman.__mro__)       # => (<class '__main__.Batman'>, 
                                # => <class 'superhero.Superhero'>, 
                                # => <class 'human.Human'>, 
                                # => <class 'bat.Bat'>, <class 'object'>)

    # Calls parent method but uses its own class attribute
    print(sup.get_species())    # => Superhuman

    # Calls overridden method
    print(sup.sing())           # => nan nan nan nan nan batman!

    # Calls method from Human, because inheritance order matters
    sup.say('I agree')          # => Sad Affleck: I agree

    # Call method that exists only in 2nd ancestor
    print(sup.sonar())          # => ))) ... (((

    # Inherited class attribute
    sup.age = 100
    print(sup.age)              # => 100

    # Inherited attribute from 2nd ancestor whose default value was overridden.
    print('Can I fly? ' + str(sup.fly)) # => Can I fly? False



####################################################
## 7. Advanced
####################################################

# Generators help you make lazy code.
def double_numbers(iterable):
    for i in iterable:
        yield i + i

# Generators are memory-efficient because they only load the data needed to
# process the next value in the iterable. This allows them to perform
# operations on otherwise prohibitively large value ranges.
# NOTE: `range` replaces `xrange` in Python 3.
for i in double_numbers(range(1, 900000000)):  # `range` is a generator.
    print(i)
    if i >= 30:
        break

# Just as you can create a list comprehension, you can create generator
# comprehensions as well.
values = (-x for x in [1,2,3,4,5])
for x in values:
    print(x)  # prints -1 -2 -3 -4 -5 to console/terminal

# You can also cast a generator comprehension directly to a list.
values = (-x for x in [1,2,3,4,5])
gen_to_list = list(values)
print(gen_to_list)  # => [-1, -2, -3, -4, -5]


# Decorators
# In this example `beg` wraps `say`. If say_please is True then it
# will change the returned message.
from functools import wraps


def beg(target_function):
    @wraps(target_function)
    def wrapper(*args, **kwargs):
        msg, say_please = target_function(*args, **kwargs)
        if say_please:
            return "{} {}".format(msg, "Please! I am poor :(")
        return msg

    return wrapper


@beg
def say(say_please=False):
    msg = "Can you buy me a beer?"
    return msg, say_please


print(say())                 # Can you buy me a beer?
print(say(say_please=True))  # Can you buy me a beer? Please! I am poor :(

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# Single line comments start with a hash.
# 单行注释由一个井号开头。
""" Multiline strings can be written
    using three "'s, and are often used
    as comments
    三个双引号(或单引号)之间可以写多行字符串,
    通常用来写注释。
"""
 
####################################################
## 1. Primitive Datatypes and Operators
## 1. 基本数据类型和操作符
####################################################
 
# You have numbers
# 数字就是数字
3#=> 3
 
# Math is what you would expect
# 四则运算也是你所期望的那样
1+1#=> 2
8-1#=> 7
10*2#=> 20
35/5#=> 7
 
# Division is a bit tricky. It is integer division and floors the results
# automatically.
# 除法有一点棘手。
# 对于整数除法来说,计算结果会自动取整。
5/2#=> 2
 
# To fix division we need to learn about floats.
# 为了修正除法的问题,我们需要先学习浮点数。
2.0     # This is a float
2.0     # 这是一个浮点数
11.0/4.0#=> 2.75 ahhh...much better
11.0/4.0#=> 2.75 啊……这样就好多了
 
# Enforce precedence with parentheses
# 使用小括号来强制计算的优先顺序
(1+3)*2#=> 8
 
# Boolean values are primitives
# 布尔值也是基本数据类型
True
False
 
# negate with not
# 使用 not 来取反
notTrue#=> False
notFalse#=> True
 
# Equality is ==
# 等式判断用 ==
1==1#=> True
2==1#=> False
 
# Inequality is !=
# 不等式判断是用 !=
1!=1#=> False
2!=1#=> True
 
# More comparisons
# 还有更多的比较运算
1<10#=> True
1>10#=> False
2<=2#=> True
2>=2#=> True
 
# Comparisons can be chained!
# 居然可以把比较运算串连起来!
1<2<3#=> True
2<3<2#=> False
 
# Strings are created with " or '
# 使用 " 或 ' 来创建字符串
"This is a string."
'This is also a string.'
 
# Strings can be added too!
# 字符串也可以相加!
"Hello "+"world!"#=> "Hello world!"
 
# A string can be treated like a list of characters
# 一个字符串可以视为一个字符的列表
# (译注:后面会讲到“列表”。)
"This is a string"[0]#=> 'T'
 
# % can be used to format strings, like this:
# % 可以用来格式化字符串,就像这样:
"%s can be %s"%("strings","interpolated")
 
# A newer way to format strings is the format method.
# This method is the preferred way
# 后来又有一种格式化字符串的新方法:format 方法。
# 我们推荐使用这个方法。
"{0} can be {1}".format("strings","formatted")
 
# You can use keywords if you don't want to count.
# 如果你不喜欢数数的话,可以使用关键字(变量)。
"{name} wants to eat {food}".format(name="Bob",food="lasagna")
 
# None is an object
# None 是一个对象
None#=> None
 
# Don't use the equality `==` symbol to compare objects to None
# Use `is` instead
# 不要使用相等符号 `==` 来把对象和 None 进行比较,
# 而要用 `is`。
"etc"isNone#=> False
NoneisNone  #=> True
 
# The 'is' operator tests for object identity. This isn't
# very useful when dealing with primitive values, but is
# very useful when dealing with objects.
# 这个 `is` 操作符用于比较两个对象的标识。
# (译注:对象一旦建立,其标识就不会改变,可以认为它就是对象的内存地址。)
# 在处理基本数据类型时基本用不上,
# 但它在处理对象时很有用。
 
# None, 0, and empty strings/lists all evaluate to False.
# All other values are True
# None、0 以及空字符串和空列表都等于 False,
# 除此以外的所有值都等于 True。
0==False  #=> True
""==False#=> True
 
 
####################################################
## 2. Variables and Collections
## 2. 变量和集合
####################################################
 
# Printing is pretty easy
# 打印输出很简单
print"I'm Python. Nice to meet you!"
 
 
# No need to declare variables before assigning to them.
# 在赋值给变量之前不需要声明
some_var=5    # Convention is to use lower_case_with_underscores
                # 变量名的约定是使用下划线分隔的小写单词
some_var#=> 5
 
# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
# 访问一个未赋值的变量会产生一个异常。
# 进一步了解异常处理,可参见下一节《控制流》。
some_other_var  # Raises a name error
                # 会抛出一个名称错误
 
# if can be used as an expression
# if 可以作为表达式来使用
"yahoo!"if3>2else2#=> "yahoo!"
 
# Lists store sequences
# 列表用于存储序列
li=[]
# You can start with a prefilled list
# 我们先尝试一个预先填充好的列表
other_li=[4,5,6]
 
# Add stuff to the end of a list with append
# 使用 append 方法把元素添加到列表的尾部
li.append(1)    #li is now [1]
                #li 现在是 [1]
li.append(2)    #li is now [1, 2]
                #li 现在是 [1, 2]
li.append(4)    #li is now [1, 2, 4]
                #li 现在是 [1, 2, 4]
li.append(3)    #li is now [1, 2, 4, 3]
                #li 现在是 [1, 2, 4, 3]
# Remove from the end with pop
# 使用 pop 来移除最后一个元素
li.pop()        #=> 3 and li is now [1, 2, 4]
                #=> 3,然后 li 现在是 [1, 2, 4]
# Let's put it back
# 我们再把它放回去
li.append(3)    # li is now [1, 2, 4, 3] again.
                # li 现在又是 [1, 2, 4, 3] 了
 
# Access a list like you would any array
# 像访问其它语言的数组那样访问列表
li[0]#=> 1
# Look at the last element
# 查询最后一个元素
li[-1]#=> 3
 
# Looking out of bounds is an IndexError
# 越界查询会产生一个索引错误
li[4]# Raises an IndexError
      # 抛出一个索引错误
 
# You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
# 你可以使用切片语法来查询列表的一个范围。
# (这个范围相当于数学中的左闭右开区间。)
li[1:3]#=> [2, 4]
# Omit the beginning
# 省略开头
li[2:]#=> [4, 3]
# Omit the end
# 省略结尾
li[:3]#=> [1, 2, 4]
 
# Remove arbitrary elements from a list with del
# 使用 del 来删除列表中的任意元素
delli[2]# li is now [1, 2, 3]
          # li 现在是 [1, 2, 3]
 
# You can add lists
# 可以把列表相加
li+other_li#=> [1, 2, 3, 4, 5, 6] - Note: li and other_li is left alone
              #=> [1, 2, 3, 4, 5, 6] - 请留意 li 和 other_li 并不会被修改
 
# Concatenate lists with extend
# 使用 extend 来合并列表
li.extend(other_li)# Now li is [1, 2, 3, 4, 5, 6]
                    # 现在 li 是 [1, 2, 3, 4, 5, 6]
 
# Check for existence in a list with in
# 用 in 来检查是否存在于某个列表中
1inli#=> True
 
# Examine the length with len
# 用 len 来检测列表的长度
len(li)#=> 6
 
 
# Tuples are like lists but are immutable.
# 元组很像列表,但它是“不可变”的。
tup=(1,2,3)
tup[0]#=> 1
tup[0]=3  # Raises a TypeError
            # 抛出一个类型错误
 
# You can do all those list thingies on tuples too
# 操作列表的方式通常也能用在元组身上
len(tup)#=> 3
tup+(4,5,6)#=> (1, 2, 3, 4, 5, 6)
tup[:2]#=> (1, 2)
2intup#=> True
 
# You can unpack tuples (or lists) into variables
# 你可以把元组(或列表)中的元素解包赋值给多个变量
a,b,c=(1,2,3)     # a is now 1, b is now 2 and c is now 3
                        # 现在 a 是 1,b 是 2,c 是 3
# Tuples are created by default if you leave out the parentheses
# 如果你省去了小括号,那么元组会被自动创建
d,e,f=4,5,6
# Now look how easy it is to swap two values
# 再来看看交换两个值是多么简单。
e,d=d,e     # d is now 5 and e is now 4
                # 现在 d 是 5 而 e 是 4
 
 
# Dictionaries store mappings
# 字典用于存储映射关系
empty_dict={}
# Here is a prefilled dictionary
# 这是一个预先填充的字典
filled_dict={"one":1,"two":2,"three":3}
 
# Look up values with []
# 使用 [] 来查询键值
filled_dict["one"]#=> 1
 
# Get all keys as a list
# 将字典的所有键名获取为一个列表
filled_dict.keys()#=> ["three", "two", "one"]
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly.
# 请注意:无法保证字典键名的顺序如何排列。
# 你得到的结果可能跟上面的示例不一致。
 
# Get all values as a list
# 将字典的所有键值获取为一个列表
filled_dict.values()#=> [3, 2, 1]
# Note - Same as above regarding key ordering.
# 请注意:顺序的问题和上面一样。
 
# Check for existence of keys in a dictionary with in
# 使用 in 来检查一个字典是否包含某个键名
"one"infilled_dict#=> True
1infilled_dict#=> False
 
# Looking up a non-existing key is a KeyError
# 查询一个不存在的键名会产生一个键名错误
filled_dict["four"]# KeyError
                    # 键名错误
 
# Use get method to avoid the KeyError
# 所以要使用 get 方法来避免键名错误
filled_dict.get("one")#=> 1
filled_dict.get("four")#=> None
# The get method supports a default argument when the value is missing
# get 方法支持传入一个默认值参数,将在取不到值时返回。
filled_dict.get("one",4)#=> 1
filled_dict.get("four",4)#=> 4
 
# Setdefault method is a safe way to add new key-value pair into dictionary
# Setdefault 方法可以安全地把新的名值对添加到字典里
filled_dict.setdefault("five",5)#filled_dict["five"] is set to 5
                                  #filled_dict["five"] 被设置为 5
filled_dict.setdefault("five",6)#filled_dict["five"] is still 5
                                  #filled_dict["five"] 仍然为 5
 
 
# Sets store ... well sets
# set 用于保存集合
empty_set=set()
# Initialize a set with a bunch of values
# 使用一堆值来初始化一个集合
some_set=set([1,2,2,3,4])# some_set is now set([1, 2, 3, 4])
                            # some_set 现在是 set([1, 2, 3, 4])
 
# Since Python 2.7, {} can be used to declare a set
# 从 Python 2.7 开始,{} 可以用来声明一个集合
filled_set={1,2,2,3,4}# => {1, 2, 3, 4}
                             # (译注:集合是种无序不重复的元素集,因此重复的 2 被滤除了。)
                             # (译注:{} 不会创建一个空集合,只会创建一个空字典。)
 
# Add more items to a set
# 把更多的元素添加进一个集合
filled_set.add(5)# filled_set is now {1, 2, 3, 4, 5}
                  # filled_set 现在是 {1, 2, 3, 4, 5}
 
# Do set intersection with &
# 使用 & 来获取交集
other_set={3,4,5,6}
filled_set&other_set#=> {3, 4, 5}
 
# Do set union with |
# 使用 | 来获取并集
filled_set|other_set#=> {1, 2, 3, 4, 5, 6}
 
# Do set difference with -
# 使用 - 来获取补集
{1,2,3,4}-{2,3,5}#=> {1, 4}
 
# Check for existence in a set with in
# 使用 in 来检查是否存在于某个集合中
2infilled_set#=> True
10infilled_set#=> False
 
 
####################################################
## 3. Control Flow
## 3. 控制流
####################################################
 
# Let's just make a variable
# 我们先创建一个变量
some_var=5
 
# Here is an if statement. Indentation is significant in python!
# prints "some_var is smaller than 10"
# 这里有一个条件语句。缩进在 Python 中可是很重要的哦!
# 程序会打印出 "some_var is smaller than 10"
# (译注:意为“some_var 比 10 小”。)
ifsome_var>10:
    print"some_var is totally bigger than 10."
    # (译注:意为“some_var 完全比 10 大”。)
elifsome_var<10:    # This elif clause is optional.
                       # 这里的 elif 子句是可选的
    print"some_var is smaller than 10."
    # (译注:意为“some_var 比 10 小”。)
else:           # This is optional too.
                # 这一句也是可选的
    print"some_var is indeed 10."
    # (译注:意为“some_var 就是 10”。)
 
 
"""
For loops iterate over lists
for 循环可以遍历列表
prints:
如果要打印出:
    dog is a mammal
    cat is a mammal
    mouse is a mammal
"""
foranimal in["dog","cat","mouse"]:
    # You can use % to interpolate formatted strings
    # 别忘了你可以使用 % 来格式化字符串
    print"%s is a mammal"%animal
    # (译注:意为“%s 是哺乳动物”。)
 
"""
`range(number)` returns a list of numbers
from zero to the given number
`range(数字)` 会返回一个数字列表,
这个列表将包含从零到给定的数字。
prints:
如果要打印出:
    0
    1
    2
    3
"""
foriinrange(4):
    printi
 
"""
While loops go until a condition is no longer met.
while 循环会一直继续,直到条件不再满足。
prints:
如果要打印出:
    0
    1
    2
    3
"""
x=0
whilex<4:
    printx
    x+=1  # Shorthand for x = x + 1
            # 这是 x = x + 1 的简写方式
 
# Handle exceptions with a try/except block
# 使用 try/except 代码块来处理异常
 
# Works on Python 2.6 and up:
# 适用于 Python 2.6 及以上版本:
try:
    # Use raise to raise an error
    # 使用 raise 来抛出一个错误
    raiseIndexError("This is an index error")
    # 抛出一个索引错误:“这是一个索引错误”。
exceptIndexErrorase:
    pass    # Pass is just a no-op. Usually you would do recovery here.
            # pass 只是一个空操作。通常你应该在这里做一些恢复工作。
 
 
####################################################
## 4. Functions
## 4. 函数
####################################################
 
# Use def to create new functions
# 使用 def 来创建新函数
defadd(x,y):
    print"x is %s and y is %s"%(x,y)
    # (译注:意为“x 是 %s 而且 y 是 %s”。)
    returnx+y    # Return values with a return statement
                    # 使用 return 语句来返回值
 
# Calling functions with parameters
# 调用函数并传入参数
add(5,6)#=> prints out "x is 5 and y is 6" and returns 11
          # (译注:意为“x 是 5 而且 y 是 6”,并返回 11)
 
# Another way to call functions is with keyword arguments
# 调用函数的另一种方式是传入关键字参数
add(y=6,x=5)   # Keyword arguments can arrive in any order.
                # 关键字参数可以以任意顺序传入
 
# You can define functions that take a variable number of
# positional arguments
# 你可以定义一个函数,并让它接受可变数量的定位参数。
defvarargs(*args):
    returnargs
 
varargs(1,2,3)#=> (1,2,3)
 
 
# You can define functions that take a variable number of
# keyword arguments, as well
# 你也可以定义一个函数,并让它接受可变数量的关键字参数。
defkeyword_args(**kwargs):
    returnkwargs
 
# Let's call it to see what happens
# 我们试着调用它,看看会发生什么:
keyword_args(big="foot",loch="ness")#=> {"big": "foot", "loch": "ness"}
 
# You can do both at once, if you like
# 你还可以同时使用这两类参数,只要你愿意:
defall_the_args(*args,**kwargs):
    printargs
    printkwargs
"""
all_the_args(1, 2, a=3, b=4) prints:
    (1, 2)
    {"a": 3, "b": 4}
"""
 
# When calling functions, you can do the opposite of varargs/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
# 在调用函数时,定位参数和关键字参数还可以反过来用。
# 使用 * 来展开元组,使用 ** 来展开关键字参数。
args=(1,2,3,4)
kwargs={"a":3,"b":4}
all_the_args(*args)# equivalent to foo(1, 2, 3, 4)
                    # 相当于 all_the_args(1, 2, 3, 4)
all_the_args(**kwargs)# equivalent to foo(a=3, b=4)
                       # 相当于 all_the_args(a=3, b=4)
all_the_args(*args,**kwargs)# equivalent to foo(1, 2, 3, 4, a=3, b=4)
                              # 相当于 all_the_args(1, 2, 3, 4, a=3, b=4)
 
# Python has first class functions
# 函数在 Python 中是一等公民
defcreate_adder(x):
    defadder(y):
        returnx+y
    returnadder
 
add_10=create_adder(10)
add_10(3)#=> 13
 
# There are also anonymous functions
# 还有匿名函数
(lambdax:x>2)(3)#=> True
 
# There are built-in higher order functions
# 还有一些内建的高阶函数
map(add_10,[1,2,3])#=> [11, 12, 13]
filter(lambdax:x>5,[3,4,5,6,7])#=> [6, 7]
 
# We can use list comprehensions for nice maps and filters
# 我们可以使用列表推导式来模拟 map 和 filter
[add_10(i)foriin[1,2,3]]  #=> [11, 12, 13]
[xforxin[3,4,5,6,7]ifx>5]#=> [6, 7]
 
####################################################
## 5. Classes
## 5. 类
####################################################
 
# We subclass from object to get a class.
# 我们可以从对象中继承,来得到一个类。
classHuman(object):
 
    # A class attribute. It is shared by all instances of this class
    # 下面是一个类属性。它将被这个类的所有实例共享。
    species="H. sapiens"
 
    # Basic initializer
    # 基本的初始化函数(构造函数)
    def__init__(self,name):
        # Assign the argument to the instance's name attribute
        # 把参数赋值为实例的 name 属性
        self.name=name
 
    # An instance method. All methods take self as the first argument
    # 下面是一个实例方法。所有方法都以 self 作为第一个参数。
    defsay(self,msg):
       return"%s: %s"%(self.name,msg)
 
    # A class method is shared among all instances
    # They are called with the calling class as the first argument
    # 类方法会被所有实例共享。
    # 类方法在调用时,会将类本身作为第一个函数传入。
    @classmethod
    defget_species(cls):
        returncls.species
 
    # A static method is called without a class or instance reference
    # 静态方法在调用时,不会传入类或实例的引用。
    @staticmethod
    defgrunt():
        return"*grunt*"
 
 
# Instantiate a class
# 实例化一个类
i=Human(name="Ian")
printi.say("hi")     # prints out "Ian: hi"
                      # 打印出 "Ian: hi"
 
j=Human("Joel")
printj.say("hello")  # prints out "Joel: hello"
                      # 打印出 "Joel: hello"
 
# Call our class method
# 调用我们的类方法
i.get_species()#=> "H. sapiens"
 
# Change the shared attribute
# 修改共享属性
Human.species="H. neanderthalensis"
i.get_species()#=> "H. neanderthalensis"
j.get_species()#=> "H. neanderthalensis"
 
# Call the static method
# 调用静态方法
Human.grunt()#=> "*grunt*"
 
 
####################################################
## 6. Modules
## 6. 模块
####################################################
 
# You can import modules
# 你可以导入模块
importmath
printmath.sqrt(16)#=> 4
 
# You can get specific functions from a module
# 也可以从一个模块中获取指定的函数
frommathimportceil,floor
printceil(3.7)  #=> 4.0
printfloor(3.7)#=> 3.0
 
# You can import all functions from a module.
# Warning: this is not recommended
# 你可以从一个模块中导入所有函数
# 警告:不建议使用这种方式
frommathimport*
 
# You can shorten module names
# 你可以缩短模块的名称
importmathasm
math.sqrt(16)==m.sqrt(16)#=> True
 
# Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.
# Python 模块就是普通的 Python 文件。
# 你可以编写你自己的模块,然后导入它们。
# 模块的名称与文件名相同。
 
# You can find out which functions and attributes
# defines a module.
# 你可以查出一个模块里有哪些函数和属性
importmath
dir(math)
posted on 2018-03-10 09:26  FengQIYUN  阅读(563)  评论(0编辑  收藏  举报