Codeforces 1043 F - Make It One
思路:
dp + 容斥
首先, 答案不会超过7, 因为前7个质数的乘积大于3e5(最坏的情况是7个数, 每个数都缺少一个不同的因子)
所以从1到7依次考虑
dp[i][j]: 表示选取i个数且gcd==j的方案数
dp[i][j] = C(cntj, i) - ∑dp[i][k] (其中cntj表示ai中是j的倍数的个数, k表示所有j的倍数)
代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define pi acos(-1.0) #define LL long long //#define mp make_pair #define pb push_back #define ls rt<<1, l, m #define rs rt<<1|1, m+1, r #define ULL unsigned LL #define pll pair<LL, LL> #define pli pair<LL, int> #define pii pair<int, int> #define piii pair<pii, int> #define mem(a, b) memset(a, b, sizeof(a)) #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); #define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout); //head const int N = 3e5 + 5; const int MOD = 1e9 + 7; int a[N], cnt[N], mul_of[N]; int dp[10][N]; int fac[N], invfac[N]; LL q_pow(LL n, LL k) { LL res = 1; while(k) { if(k&1) res = (res * n) % MOD; n = (n * n) % MOD; k >>= 1; } return res; } void init() { fac[0] = 1; for (int i = 1; i < N; i++) fac[i] = (1LL * fac[i-1] * i) % MOD; invfac[N-1] = q_pow(fac[N-1], MOD-2); for (int i = N-2; i >= 0; i--) invfac[i] = (1LL * invfac[i+1] * (i+1)) % MOD; } LL C(int n, int m) { if(n < m) return 0; return (1LL * fac[n] * invfac[m]) % MOD * invfac[n-m] % MOD; } int main() { int n; init(); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i]), cnt[a[i]]++; for (int i = 1; i < N; i++) { for (int j = i; j < N; j += i) { mul_of[i] += cnt[j]; } } for (int i = 1; i <= 7; i++) { for (int j = N-1; j > 0; j--) { int sum = 0; for (int k = 2*j; k < N; k += j) sum = (sum + dp[i][k]) % MOD; dp[i][j] = (C(mul_of[j], i) - sum) % MOD; } if(dp[i][1]) { printf("%d\n", i); return 0; } } printf("-1\n"); return 0; }