Codefroces 958C2 - Encryption (medium)

C2 - Encryption (medium)

思路:

传统的dp:

dp[i][j] 表示到第i个位置为止,分成j段的最大值

dp[i][j] = max(dp[l][j-1] + (sum[i] - sum[l]) % p) 0<= l < i 

 

优化的dp:

我们发现n很大,但是p很小

于是

dp[i][j] 表示sum取模p后为i,分成j段的最大值

dp[i][j] = max(dp[l][j-1] + (sum[i] - l) % p) 0<= l < p

代码:

#include<bits/stdc++.h>
using namespace std;
#define LL long long 
#define pb push_back
#define mem(a, b) memset(a, b, sizeof(a))

const int N = 2e4 + 5;
const int INF = 0x3f3f3f3f;
int dp[105][55], a[N];
int main() {
    int n, p, k;
    scanf("%d%d%d", &n, &k, &p);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        a[i] += a[i-1];
        a[i] %= p;
    }
    for (int  i = 0; i < p; i++) {
        for (int j = 0; j <= k; j++)
            dp[i][j] = -INF;
    }
    dp[0][0] = 0;
    for (int i = 1; i <= n; i++) {
        for (int  j = k; j >= 1; j--) {
            for(int l = 0; l < p; l ++)
            dp[a[i]][j] = max(dp[a[i]][j], dp[l][j-1] + ((a[i]-l)%p+p)%p);
        }
    }
    printf("%d\n",dp[a[n]][k]);
    return 0;
} 
posted @ 2018-04-16 18:49  Wisdom+.+  阅读(316)  评论(7编辑  收藏  举报