Codeforces 1179 D - Fedor Runs for President
思路:
推出斜率优化公式后,会发现最优点只可能来自凸斜率中的第一个元素和最后一个元素,
这两个元素不用维护凸斜率也能知道,就是第一个和上一个元素
代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits/stdc++.h> using namespace std; #define y1 y11 #define fi first #define se second #define pi acos(-1.0) #define LL long long //#define mp make_pair #define pb emplace_back #define ls rt<<1, l, m #define rs rt<<1|1, m+1, r #define ULL unsigned LL #define pll pair<LL, LL> #define pli pair<LL, int> #define pii pair<int, int> #define piii pair<pii, int> #define pdd pair<double, double> #define mem(a, b) memset(a, b, sizeof(a)) #define debug(x) cerr << #x << " = " << x << "\n"; #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); //head const int N = 5e5 + 5; vector<int> g[N]; int n, u, v, sz[N]; LL dp[N], ans; //(dp[j]-dp[k]+sz[j]^2-sz[k]^2)/(sz[j]-sz[k]) >= 2*(n-sz[i]) k < j bool _g(int k, int j, LL C) { return (dp[j]-dp[k]+sz[j]*1LL*sz[j]-sz[k]*1LL*sz[k]) <= C*(sz[j]-sz[k]); } //(dp[i]-dp[j]+sz[i]^2-sz[j]^2)/(sz[i]-sz[j]) >= (dp[j]-dp[k]+sz[j]^2-sz[k]^2)/(sz[j]-sz[k]) //k < j < i bool gg(int k, int j, int i) { return (dp[i]-dp[j]+sz[i]*1LL*sz[i]-sz[j]*1LL*sz[j])*(sz[j]-sz[k]) <= (dp[j]-dp[k]+sz[j]*1LL*sz[j]-sz[k]*1LL*sz[k])*(sz[i]-sz[j]); } void dfs(int u, int o) { sz[u] = 1; for (int v : g[u]) { if(v != o) { dfs(v, u); ans = min(ans, (n-sz[v])*1LL*(n-sz[v]) + sz[v]*1LL*sz[v]); sz[u] += sz[v]; } } dp[u] = sz[u]*1LL*sz[u]; for (int v : g[u]) { if(v != o) { dp[u] = min(dp[u], (sz[u]-sz[v])*1LL*(sz[u]-sz[v])+dp[v]); } } sort(g[u].begin(), g[u].end(), [](int x, int y){ return sz[x] > sz[y]; }); int l = -1, r = -1; for (int v : g[u]) { if(v == o) continue; if(l == -1) { l = r = v; continue; } int x = l; ans = min(ans, dp[v]+dp[x]+(n-sz[v]-sz[x])*1LL*(n-sz[v]-sz[x])); x = r; ans = min(ans, dp[v]+dp[x]+(n-sz[v]-sz[x])*1LL*(n-sz[v]-sz[x])); r = v; } } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) scanf("%d %d", &u, &v), g[u].pb(v), g[v].pb(u); int rt = 1; for (int i = 1; i <= n; ++i) if(g[i].size() != 1) rt = i; ans = n*1LL*n; dfs(rt, rt); printf("%lld\n", n*1LL*(n-1) - (ans-n)/2); return 0; }