(C语言)分支界限法求解旅行商(TSP)问题
1.代码:
#include <stdio.h> #include <malloc.h> #define NoEdge 1000 struct MinHeapNode { int lcost; //子树费用的下界 int cc; //当前费用 int rcost; //x[s:n-1]中顶点最小出边费用和 int s; //根节点到当前节点的路径为x[0:s] int *x; //需要进一步搜索的顶点是//x[s+1:n-1] struct MinHeapNode *next; }; int n; //图G的顶点数 int **a; //图G的邻接矩阵 //int NoEdge; //图G的无边标记 int cc; //当前费用 int bestc; //当前最小费用 MinHeapNode* head = 0; /*堆头*/ MinHeapNode* lq = 0; /*堆第一个元素*/ MinHeapNode* fq = 0; /*堆最后一个元素*/ int DeleteMin(MinHeapNode*&E) { MinHeapNode* tmp = NULL; tmp = fq; // w = fq->weight ; E = fq; if(E == NULL) return 0; head->next = fq->next; /*一定不能丢了链表头*/ fq = fq->next; // free(tmp) ; return 0; } int Insert(MinHeapNode* hn) { if(head->next == NULL) { head->next = hn; //将元素放入链表中 fq = lq = head->next; //一定要使元素放到链中 }else { MinHeapNode *tmp = NULL; tmp = fq; if(tmp->cc > hn->cc) { hn->next = tmp; head->next = hn; fq = head->next; /*链表只有一个元素的情况*/ }else { for(; tmp != NULL;) { if(tmp->next != NULL && tmp->cc > hn->cc) { hn->next = tmp->next; tmp->next = hn; break; } tmp = tmp->next; } } if(tmp == NULL) { lq->next = hn; lq = lq->next; } } return 0; } int BBTSP(int v[]) {//解旅行售货员问题的优先队列式分支限界法 /*初始化最优队列的头结点*/ head = (MinHeapNode*)malloc(sizeof(MinHeapNode)); head->cc = 0; head->x = 0; head->lcost = 0; head->next = NULL; head->rcost = 0; head->s = 0; int *MinOut = new int[n + 1]; /*定义定点i的最小出边费用*/ //计算MinOut[i]=顶点i的最小出边费用 int MinSum = 0;//最小出边费用总合 for(int i = 1; i <= n; i++) { int Min = NoEdge; /*定义当前最小值*/ for(int j = 1; j <= n; j++) if(a[i][j] != NoEdge && /*当定点i,j之间存在回路时*/ (a[i][j] < Min || Min == NoEdge)) /*当顶点i,j之间的距离小于Min*/ Min = a[i][j]; /*更新当前最小值*/ if(Min == NoEdge) return NoEdge;//无回路 MinOut[i] = Min; //printf("%d\n",MinOut[i]);/*顶点i的最小出边费用*/ MinSum += Min; // printf("%d\n",MinSum); /*最小出边费用的总和*/ } MinHeapNode *E = 0; E = (MinHeapNode*)malloc(sizeof(MinHeapNode)); E->x = new int[n]; // E.x=new int[n]; for(int i = 0; i < n; i++) E->x[i] = i + 1; E->s = 0; E->cc = 0; E->rcost = MinSum; E->next = 0; //初始化当前扩展节点 int bestc = NoEdge; /*记录当前最小值*/ //搜索排列空间树 while(E->s < n - 1) {//非叶结点 if(E->s == n - 2) {//当前扩展结点是叶结点的父结点 /* 首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结点。如果该叶结点相应一条可行回路 且费用小于当前最小费用,则将该叶结点插入到优先队列中,否则舍去该叶结点 */ if(a[E->x[n - 2]][E->x[n - 1]] != NoEdge && /*当前要扩展和叶节点有边存在*/ a[E->x[n - 1]][1] != NoEdge && /*当前页节点有回路*/ (E->cc + a[E->x[n - 2]][E->x[n - 1]] + a[E->x[n - 1]][1] < bestc /*该节点相应费用小于最小费用*/ || bestc == NoEdge)) { bestc = E->cc + a[E->x[n - 2]][E->x[n - 1]] + a[E->x[n - 1]][1]; /*更新当前最新费用*/ E->cc = bestc; E->lcost = bestc; E->s++; E->next = NULL; Insert(E); /*将该页节点插入到优先队列中*/ }else free(E->x);//该页节点不满足条件舍弃扩展结点 }else {/*产生当前扩展结点的儿子结点 当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。由于当前扩展结点所相应的路径是x[0:s], 其可行儿子结点是从剩余顶点x[s+1:n-1]中选取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。 对于当前扩展结点的每一个可行儿子结点,计算出其前缀(x[0:s],x[i])的费用cc和相应的下界lcost。 当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。*/ for(int i = E->s + 1; i < n; i++) if(a[E->x[E->s]][E->x[i]] != NoEdge) { /*当前扩展节点到其他节点有边存在*/ //可行儿子结点 int cc = E->cc + a[E->x[E->s]][E->x[i]]; /*加上节点i后当前节点路径*/ int rcost = E->rcost - MinOut[E->x[E->s]]; /*剩余节点的和*/ int b = cc + rcost; //下界 if(b < bestc || bestc == NoEdge) {//子树可能含最优解,结点插入最小堆 MinHeapNode * N; N = (MinHeapNode*)malloc(sizeof(MinHeapNode)); N->x = new int[n]; for(int j = 0; j < n; j++) N->x[j] = E->x[j]; N->x[E->s + 1] = E->x[i]; N->x[i] = E->x[E->s + 1];/*添加当前路径*/ N->cc = cc; /*更新当前路径距离*/ N->s = E->s + 1; /*更新当前节点*/ N->lcost = b; /*更新当前下界*/ N->rcost = rcost; N->next = NULL; Insert(N); /*将这个可行儿子结点插入到活结点优先队列中*/ } } free(E->x); }//完成结点扩展 DeleteMin(E);//取下一扩展结点 if(E == NULL) break; //堆已空 } if(bestc == NoEdge) return NoEdge;//无回路 for(int i = 0; i < n; i++) v[i + 1] = E->x[i];//将最优解复制到v[1:n] while(true) {//释放最小堆中所有结点 free(E->x); DeleteMin(E); if(E == NULL) break; } return bestc; } int main() { n = 0; int i = 0; //FILE *in, *out; //in = fopen("input.txt", "r"); //out = fopen("output.txt", "w"); //if(in == NULL || out == NULL) //{ // printf("没有输入输出文件\n"); // return 1; //} //fscanf(in, "%d", &n); n=5; a = (int**)malloc(sizeof(int*) * (n + 1)); for(i = 1; i <= n; i++) { a[i] = (int*)malloc(sizeof(int) * (n + 1)); } // for(i = 1; i <= n; i++) // for(int j = 1; j <= n; j++) // //fscanf(in, "%d", &a[i][j]); // a[i][j]=1; a[1][1]=0; a[1][2]=5; a[1][3]=8; a[1][4]=5; a[1][5]=4; a[2][1]=5; a[2][2]=0; a[2][3]=5; a[2][4]=6; a[2][5]=3; a[3][1]=8; a[3][2]=5; a[3][3]=0; a[3][4]=5; a[3][5]=4; a[4][1]=5; a[4][2]=6; a[4][3]=6; a[4][4]=0; a[4][5]=3; a[5][1]=4; a[5][2]=3; a[5][3]=4; a[5][4]=3; a[5][5]=0; // prev = (int*)malloc(sizeof(int)*(n+1)) ; int*v = (int*)malloc(sizeof(int) * (n + 1));// MaxLoading(w , c , n) ; for(i = 1; i <= n; i++) v[i] = 0; bestc = BBTSP(v); printf("\n"); for(i = 1; i <= n; i++) fprintf(stdout, "%d\t", v[i]); fprintf(stdout, "\n"); fprintf(stdout, "%d\n", bestc); return 0; }2.输出结果
1->2->5->3->4->1 距离:22