(中等) HDU 3416 Marriage Match IV,SPFA+SAP。
Description
Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
题意就是求在最短路的基础上有几条路可以到达,但是每条路之间边彼此不能重合。。。
然后就是先求出最短路来,然后把所以 lowcost[v]==lowcost[u]+cost[u][v] 的边留下,然后再求最大流就好了。。。。。。
代码如下:
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; const int MaxN=5010; const int MaxM=500005; const int INF=10e8; namespace first { struct Edge { int to,next,cost; }; Edge E[MaxM]; int head[MaxN],Ecou; int vis[MaxN]; void init(int N) { Ecou=0; for(int i=1;i<=N;++i) { head[i]=-1; vis[i]=0; } } void addEdge(int u,int v,int c) { E[Ecou].to=v; E[Ecou].cost=c; E[Ecou].next=head[u]; head[u]=Ecou++; } void SPFA(int lowcost[],int N,int start) { queue <int> que; int u,v,c; for(int i=1;i<=N;++i) lowcost[i]=INF; lowcost[start]=0; que.push(start); vis[start]=1; while(!que.empty()) { u=que.front(); que.pop(); vis[u]=0; for(int i=head[u];i!=-1;i=E[i].next) { v=E[i].to; c=E[i].cost; if(lowcost[v]>lowcost[u]+c) { lowcost[v]=lowcost[u]+c; if(!vis[v]) { que.push(v); vis[v]=1; } } } } } } namespace second { struct Edge { int to,next,cap,flow; }; Edge E[MaxM]; int Ecou,head[MaxN]; int gap[MaxN],dis[MaxN],pre[MaxN],cur[MaxN]; int S,T; void init(int N,int _S,int _T) { S=_S; T=_T; Ecou=0; for(int i=1;i<=N;++i) { head[i]=-1; gap[i]=dis[i]=0; } } void addEdge(int u,int v,int c,int rc=0) { E[Ecou].to=v; E[Ecou].cap=c; E[Ecou].flow=0; E[Ecou].next=head[u]; head[u]=Ecou++; E[Ecou].to=u; E[Ecou].cap=rc; E[Ecou].flow=0; E[Ecou].next=head[v]; head[v]=Ecou++; } void update(int remm) { int u=T; while(u!=S) { E[pre[u]].flow+=remm; E[pre[u]^1].flow-=remm; u=E[pre[u]^1].to; } } int SAP(int N) { for(int i=1;i<=N;++i) cur[i]=head[i]; int u,v,ret=0,remm=INF,mindis; u=S; pre[S]=-1; gap[0]=N; while(dis[S]<N) { loop: for(int i=cur[u];i!=-1;i=E[i].next) { v=E[i].to; if(E[i].cap-E[i].flow && dis[u]==dis[v]+1) { pre[v]=i; cur[u]=i; u=v; if(u==T) { for(int i=pre[u];i!=-1;i=pre[E[i^1].to]) remm=min(remm,E[i].cap-E[i].flow); ret+=remm; update(remm); u=S; remm=INF; } goto loop; } } mindis=N-1; for(int i=head[u];i!=-1;i=E[i].next) if(E[i].cap-E[i].flow && mindis>dis[E[i].to]) { cur[u]=i; mindis=dis[E[i].to]; } if(--gap[dis[u]]==0) break; dis[u]=mindis+1; ++gap[dis[u]]; if(u!=S) u=E[pre[u]^1].to; } return ret; } } int lowcost[MaxN]; int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int T; int N,M; int A,B; int a,b,c; scanf("%d",&T); while(T--) { scanf("%d %d",&N,&M); first::init(N); { using namespace first; while(M--) { scanf("%d %d %d",&a,&b,&c); addEdge(a,b,c); } scanf("%d %d",&A,&B); SPFA(lowcost,N,A); second::init(N,A,B); for(int u=1;u<=N;++u) for(int i=head[u];i!=-1;i=E[i].next) if(lowcost[E[i].to]==lowcost[u]+E[i].cost) second::addEdge(u,E[i].to,1); } { using namespace second; printf("%d\n",SAP(N)); } } return 0; }