matplotlib点线 坐标刻度 3D图绘制(六)

plot语句中支持除X,Y以外的参数,以字符串形式存在,来控制颜色、线型、点型等要素,语法形式为:
plt.plot(X, Y, 'format', ...)

1 点和线的样式

颜色

参数color或c
五种定义颜色值的方式
别名
color='r'

合法的HTML颜色名
color = 'red'
HTML十六进制字符串
color = '#eeefff'
归一化到[0, 1]的RGB元组
color = (0.3, 0.3, 0.4)
灰度
color = (0.1)

透明度

# 透明度
y = np.arange(1, 3)
plt.plot(y, c="red", alpha=0.1);    # 设置透明度
plt.plot(y+1, c="red", alpha=0.5);
plt.plot(y+2, c="red", alpha=0.9);

背景色

设置背景色,通过plt.subplot()方法传入facecolor参数,来设置坐标轴的背景色

plt.subplot(facecolor='cyan');
plt.plot(np.random.randn(10),np.arange(1,11))

线型

  • 线型

    线条风格 描述 线条风格 描述
    ' - ' 实线 ' : ' 虚线
    ' -- ' 破折线 'steps' 阶梯线
    ' -. ' 点划线 '' 没有
  • 点型

    y = np.arange(1, 3, 0.2)
    plt.plot(y, '1', y+0.5, '2', y+1, '3', y+1.5,'4');
    plt.plot(y+2, '3')  #不声明marker,默认ls = None
    plt.plot(y+2.5,marker = '3') #声明了marker,ls 默认是实线
    plt.show()
    
  • 多参数连用

    #颜色、点型、线型
    
    x = np.linspace(0, 5, 10)
    plt.plot(x,3*x,'r-.')
    plt.plot(x, x**2, 'b^:') # blue line with dots
    plt.plot(x, x**3, 'go-.') # green dashed line
    plt.show()
    
  • 点线的设置

    参数 描述 参数 描述
    color或c 线的颜色 linestyle或ls 线型
    linewidth或lw 线宽 marker 点型
    markeredgecolor 点边缘的颜色 markeredgewidth 点边缘宽度
    makerfacecolor 点内部的颜色 markersize 点大小

三种设置方式

对实例使用一系列的setter方法

x = np.arange(0,10)
y = np.random.randint(10,30,size = 10)
line,= plt.plot(x, y)
line2 = plt.plot(x,y*2,x,y*3)
line.set_linewidth(5)
line2[1].set_marker('o')
print(line,line2)

使用setp()方法

line = plt.plot(x, y)
plt.setp(line, 'linewidth', 1.5,'color','r','marker','o','linestyle','--')

2 坐标轴刻度

  • xticks()和yticks()方法
x = [5, 3, 7, 2, 4, 1]
plt.plot(x);
plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f']); # 传入位置和标签参数,以修改坐标轴刻度
plt.yticks(range(1, 8, 2));
plt.show()
  • 面向对象方法
set_xticks、set_yticks、set_xticklabels、set_yticklabels方法

fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(111)

x = np.linspace(0, 5, 100)

ax.plot(x, x**2, x, x**3, lw=2)

ax.set_xticks([1, 2, 3, 4, 5])
ax.set_xticklabels(['a','b','c','d','e'], fontsize=18)

yticks = [0, 50, 100, 150]
ax.set_yticks(yticks)
ax.set_yticklabels([y for y in yticks], fontsize=18); # use LaTeX formatted labels
  • 正弦余弦:LaTex语法,用\(\pi\)等表达式在图表上写上希腊字母
x = np.arange(-np.pi,np.pi,0.01)
plt.figure(figsize=(12,9))
plt.plot(x,np.sin(x),x,np.cos(x))

plt.axis([x.min()-1,x.max()+1,-1.2,1.2])

#xticks:参数一刻度,参数二,对应刻度上的值
plt.xticks(np.arange(-np.pi,np.pi+1,np.pi/2),
           ['$-\delta$','$-\pi$/2','0','$\pi$/2','$\pi$'],size = 20)

plt.yticks([-1,0,1],['min','0','max'],size = 20)

plt.show() 

3 直方图 条形图 饼图 散点图

  • 直方图 【直方图的参数只有一个x!!!不像条形图需要传入x,y】

    hist()的参数
    bins
    可以是一个bin数量的整数值,也可以是表示bin的一个序列。默认值为10
    normed
    如果值为True,直方图的值将进行归一化处理,形成概率密度,默认值为False
    color
    指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
    orientation
    通过设置orientationhorizontal 横向创建水平直方图。默认值为vertical 纵向

    x = np.random.randint(5,size = 5)
    display(x)
    plt.hist(x,histtype = 'bar'); 
    
  • 正态分布

    u = 100 #数学期望
    s = 15 #方差
    x = np.random.normal(u,s,1000) # 生成正太分布数据
    
    ax = plt.gca() #获取当前图表
    ax.set_xlabel('Value')
    ax.set_ylabel('Frequency') #设置x,y轴标题
    ax.set_title("Histogram normal u = 100 s = 15") #设置图表标题
    
    ax.hist(x,bins = 100,color = 'r',orientation='horizontal')
    plt.show()
    
  • 条形图

    bar() 方法 : 第一个参数为条形左下角的x轴坐标,第二个参数为条形的高度;
    matplotlib会自动设置条形的宽度,本例中条形宽0.8

    plt.bar([1, 2, 3], [3, 2, 5]); 
    plt.show()
    
    # 例子:绘制并列条形图
    data1 = 10*np.random.rand(5)
    data2 = 10*np.random.rand(5)
    data3 = 10*np.random.rand(5)
    
    locs = np.arange(1, len(data1)+1)
    width = 0.27
    
    plt.bar(locs, data1, width=width);
    plt.bar(locs+width, data2, width=width, color='red');
    plt.bar(locs+2*width, data3, width=width, color='green') ;
    plt.xticks(locs + width*1, locs);
    plt.show()
    

    barh方法

    plt.barh([1, 2, 3], [3, 2, 5],height = 0.27,color = 'cyan');
    plt.show()
    
  • 饼状图

    饼图:【饼图也只有一个参数x!】
    pie()
    饼图适合展示各部分占总体的比例,条形图适合比较各部分的大小

    常规的饼图绘制

    plt.figure(figsize = (4,4)) # 饼图绘制正方形
    x = [45,35,20] #百分比
    labels = ['Cats','Dogs','Fishes'] #每个区域名称
    plt.pie(x,labels = labels)
    plt.show()
    

    部分饼图的绘制

    plt.figure(figsize=(4, 4));
    x = [0.1, 0.2, 0.3] # 当各部分之和小于1时,则不计算各部分占总体的比例,饼的大小是数值和1之比
    labels = ['Cats', 'Dogs', 'Fishes']
    plt.pie(x, labels=labels); # labels参数可以设置各区域标签
    plt.show()
    

    切分的饼图

    # labels参数设置每一块的标签;labeldistance参数设置标签距离圆心的距离(比例值)
    # autopct参数设置比例值的显示格式(%1.1f%%);pctdistance参数设置比例值文字距离圆心的距离
    # explode参数设置每一块顶点距圆形的长度(比例值);colors参数设置每一块的颜色;
    # shadow参数为布尔值,设置是否绘制阴影
    
    plt.figure(figsize=(4, 4));
    x = [4, 9, 21, 55, 30, 18]
    labels = ['Swiss', 'Austria', 'Spain', 'Italy', 'France', 'Benelux']
    explode = [0.2, 0.1, 0, 0, 0.1, 0]
    colors = ['r', 'k', 'b', 'm', 'c', 'g']
    plt.pie(x, 
            labels=labels, 
            labeldistance=1.2,
            explode=explode, 
            colors=colors, 
            autopct='%1.1f%%', 
            pctdistance=0.5, 
            shadow=True);
    plt.show()
    
  • 散点图

    散点图 : 【散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!】
    scatter()

    # s参数设置散点的大小;c参数设置散点的颜色;marker参数设置散点的形状
    x = np.random.randn(1000)
    y = np.random.randn(1000)
    size = 50*abs(np.random.randn(1000))
    colors = np.random.randint(16777215,size = 1000)
    
    li = []
    for color in colors:
        a = hex(color)
        str1 = a[2:]
        l = len(str1)
        for i in range(1,7-l):
            str1 = '0'+str1
        str1 = "#" + str1
        li.append(str1)
    
    plt.scatter(x, y,s = size, c=li, marker='d');
    plt.show()
    

    复杂的饼图的绘制

    import numpy as np
    import pandas as pd
    from pandas import Series,DataFrame
    import matplotlib.pyplot as plt
    
    x = np.random.randn(1000)
    y1 = np.random.randn(1000)
    y2 = 1.2 + np.exp(x) #exp(x) 返回的是e的x次方
    
    ax1 = plt.subplot(121)
    plt.scatter(x,y1,color = 'purple',alpha = 0.3,edgecolors = 'white',label = 'no correl')
    plt.xlabel('no correlation')
    plt.grid(True)
    plt.legend()
    
    ax2 = plt.subplot(122)
    plt.scatter(x,y2,color = 'green',alpha = 0.3,edgecolors = 'gray',label = 'correl')
    plt.xlabel('correlation')
    plt.grid(True)
    plt.legend()
    
    plt.show()
    

  • 图形的文字,注释,箭头

    pyplot函数 API方法 描述
    text() mpl.axes.Axes.text() 在Axes对象中任意位置添加文字
    xlabel mpl.axes.Axes.set_xlabel() 为X轴添加标签
    ylabel mpl.axes.Axes.set_ylabel() 为y轴添加标签
    title() mpl.axes.Axes.set_title() 为Axes对象添加标题
    legend() mpl.axes.Axes.legend() 为Axes对象添加图例
    figtext() mpl.figure.Figure.text() 在Figure对象中任意位置添加文字
    suptitle() mpl.figure.Figure.suptitle() 在Figure对象中添加中心化标题
    annnotate mpl.axes.Axes.annnotate() 在Axes对象添加注释(箭头)

    注释

    # xy参数设置箭头指示的位置,xytext参数设置注释文字的位置
    # arrowprops参数以字典的形式设置箭头的样式
    # width参数设置箭头长方形部分的宽度,headlength参数设置箭头尖端的长度,
    # headwidth参数设置箭头尖端底部的宽度,shrink参数设置箭头顶点、尾部与指示点、注释文字的距离(比例值)
    
    y = [13, 11, 13, 12, 13, 10, 30, 12, 11, 13, 12, 12, 12, 11, 12]
    plt.plot(y);
    plt.ylim(ymax=35); # 为了让注释不会超出图的范围,需要调整y坐标轴的界限
    plt.annotate('this spot must really\nmean something', xy=(6, 30), xytext=(8, 31.5),
                 arrowprops=dict(width=15, headlength=20, headwidth=20, facecolor='black', shrink=0.1));
    plt.show()
    
    # 生成3个正态分布数据数据集
    x1 = np.random.normal(30, 3, 100)
    x2 = np.random.normal(20, 2, 100)
    x3 = np.random.normal(10, 3, 100)
    
    # 绘制3个数据集,并为每个plot指定一个字符串标签
    plt.plot(x1, label='plot') # 如果不想在图例中显示标签,可以将标签设置为_nolegend_
    plt.plot(x2, label='2nd plot')
    plt.plot(x3, label='last plot')
    
    # 绘制图例
    plt.legend(bbox_to_anchor=(0, 1.02, 1, 0.102), # 指定边界框起始位置为(0, 1.02),并设置宽度为1,高度为0.102
               ncol=3, # 设置列数为3,默认值为1
               mode="expand", # mode为None或者expand,当为expand时,图例框会扩展至整个坐标轴区域
               borderaxespad=0.) # 指定坐标轴和图例边界之间的间距
    
    # 绘制注解
    plt.annotate("Important value", # 注解文本的内容
                 xy=(55,20), # 箭头终点所在位置
                 xytext=(5, 38), # 注解文本的起始位置,箭头由xytext指向xy坐标位置
                 arrowprops=dict(arrowstyle='->')); # arrowprops字典定义箭头属性,此处用arrowstyle
    

    箭头

    plt.figure(figsize=(12,9))
    plt.axis([0, 10, 0, 20]);
    arrstyles = ['-', '->', '-[', '<-', '<->', 'fancy', 'simple', 'wedge']
    for i, style in enumerate(arrstyles):
        plt.annotate(style, xytext=(1, 2+2*i), xy=(4, 1+2*i), arrowprops=dict(arrowstyle=style));
    
    connstyles=["arc", "arc,angleA=10,armA=30,rad=30", "arc3,rad=.2", "arc3,rad=-.2", "angle", "angle3"]
    for i, style in enumerate(connstyles):
        plt.annotate(style, xytext=(6, 2+2*i), xy=(8, 1+2*i), arrowprops=dict(arrowstyle='->', connectionstyle=style));
    plt.show()
    
  • 3D图形绘制

    import numpy as np
    import matplotlib.pyplot as plt
    #3d图形必须的
    from mpl_toolkits.mplot3d.axes3d import Axes3D
    %matplotlib inline
    
    #系数,由X,Y生成Z
    a = 0.7
    b =  np.pi 
    #计算Z轴的值
    def mk_Z(X, Y):
        return 2 + a - 2 * np.cos(X) * np.cos(Y) - a * np.cos(b - 2*X)
    #生成X,Y,Z
    x = np.linspace(0, 2*np.pi, 100)
    y = np.linspace(0, 2*np.pi, 100)
    X,Y = np.meshgrid(x, y)
    Z = mk_Z(X, Y)
    
    fig = plt.figure(figsize=(14,6))
    #创建3d的视图,使用属性projection
    ax = fig.add_subplot(1, 2, 1, projection='3d')
    ax.plot_surface(X,Y,Z,rstride = 5,cstride = 5)
    #创建3d视图,使用colorbar,添加颜色柱
    ax = fig.add_subplot(1, 2, 2, projection='3d')
    p = ax.plot_surface(X, Y, Z, rstride=5, cstride=5, cmap='rainbow', antialiased=True)
    cb = fig.colorbar(p, shrink=0.5)
    

  • 玫瑰图绘制

    极坐标条形图

    #极坐标条形图
    def showRose(values,title):
        
        max_value = values.max()
        # 分为8个面元
        N = 8
        # 面元的分隔角度
        angle = np.arange(0.,2 * np.pi, 2 * np.pi / N)
        # 每个面元的大小(半径)
        radius = np.array(values)
        # 设置极坐标条形图
        
        plt.axes([0, 0, 2, 2], polar=True,facecolor = 'g')
        
        colors = [(1 - x/max_value, 1 - x/max_value, 0.75) for x in radius]
        # 画图
        
        plt.bar(angle, radius, width=(2*np.pi/N), bottom=0.0, color=colors)
        plt.title(title,x=0.2, fontsize=20)
    
    #拉韦纳(Ravenna)又译“腊万纳”“拉文纳”“拉温拿”。意大利北部城市。位于距亚得里亚海10公里的沿海平原上
    data = np.load('Ravenna_wind.npy')
    hist, angle = np.histogram(data,8,[0,360])
    showRose(hist,'Ravenna')
    

posted @ 2018-07-16 11:58  诚实善良小郎君  阅读(2735)  评论(0编辑  收藏  举报