CF1521E Nastia and a Beautiful Matrix
CF1521E Nastia and a Beautiful Matrix
其实这题并不需要排序,下面会给出证明
答案满足单调性,可以通过二分找出边长 \(len\)。如下图所示将网格染成四种颜色:
饱和的情况就是把所有非白色的格子都填上数,共 \(S=len^2-\lfloor \frac{len}{2} \rfloor^2\) 个,那么二分第一个条件是 \(S\ge\sum a_i\)
然后考虑众数 \(x\),为了满足对角线不重复,它最多只能放在蓝色和红(或黄)色的格子里,共 \(T=len\times \lceil \frac{len}{2} \rceil\) 个,需满足 \(T\ge a[x]\)
对于满足以上两个条件的 \(len\),一定可以构造出一个解,方法如下:
把所有数排成一列,相同的数排在一起,\(x\) 排在最前面,其他数顺序随意,然后先往红格子放,红的放完了放蓝的,最后放黄的。
简单的证明一下所有 \(2\times 2\) 对角线不重复:所有对角线都由一个黄的一个红的组成,进行分类,
1、如果 \(x\) 填满了红格子,并且根据二分条件 \(x\) 最多填满蓝的,不会填到黄的,所以黄和红不重复
2、如果 \(x\) 没填满红格子,若出现重复,则存在一个 \(y\),在红格子里填了,又填满了蓝的,还得填黄的。而格子数量 蓝 \(\ge\) 红,\(x\) 又是众数,显然不可能
所以其他数的填放顺序根本无所谓,不需要排序。
#include <bits/stdc++.h>
using namespace std;
#define int long long
void read (int &x) {
char ch = getchar(); x = 0; while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - 48, ch = getchar();
} const int N = 2e5 + 5, M = 2000, NN = N * 5;
int n, s, mx, a[N], res[M][M], sr, sb, sy, id[N];
pair<int, int> r[NN], b[NN], y[NN];
#define xx first
#define yy second
int get () {
int l = 0, r = 1000, mid, res = 0;
while (l <= r) {
mid = l + r >> 1;
if (s <= mid * mid - (mid / 2) * (mid / 2) && a[1] <= mid * ((mid + 1) / 2))
res = mid, r = mid - 1;
else l = mid + 1;
}
return res;
}
signed main() {
int T; read (T);
while (T--) {
read (s), read (n); mx = 0;
for (int i = 1; i <= n; ++i) {
read (a[i]), id[i] = i;
if (a[i] > a[mx]) mx = i;
}
id[1] = mx, id[mx] = 1; swap (a[1], a[mx]);
int len = get (); sr = sb = sy = 0;
for (int i = 2; i <= len; i += 2)
for (int j = 1; j <= len; j += 2) r[++sr] = {i, j};
for (int i = 1; i <= len; i += 2)
for (int j = 1; j <= len; j += 2) b[++sb] = {i, j};
for (int i = 1; i <= len; i += 2)
for (int j = 2; j <= len; j += 2) y[++sy] = {i, j};
for (int i = 1; i <= len; ++i)
for (int j = 1; j <= len; ++j) res[i][j] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= a[i]; ++j) {
if (sr) res[r[sr].xx][r[sr].yy] = id[i], --sr;
else if (sb) res[b[sb].xx][b[sb].yy] = id[i], --sb;
else res[y[sy].xx][y[sy].yy] = id[i], --sy;
}
}
printf ("%d\n", len);
for (int i = 1; i <= len; ++i) {
for (int j = 1; j <= len; ++j) printf ("%d ", res[i][j]); puts ("");
}
}
return 0;
}