题解 UVa10892

题目大意 多组数据,每组数据给定一个整数 \(n\),求满足 \(LCM(x,y)=n\) 的不同无序整数对 \((x,y)\) 的数目。

分析 若有 \(LCM(x,y)=n\),则有 \(GCD(n/x,n/y)=1\),问题便转化为了求 \(n\) 的所有因数中互质的数量,枚举即可。

#include<bits/stdc++.h>
using namespace std;

int n, ans;
int tot, fac[40000];

int gcd(int x, int y)
{
	if(!y) return x;
	return gcd(y, x % y);
}

int main()
{
	while(~scanf("%d", &n) && n) {
		tot = ans = 0;
		
		for(int i = 1; i * i <= n; ++i) {
			if(!(n % i)) {
				fac[++tot] = i;
				if(i * i != n) fac[++tot] = n / i;
			}
		}
		
		for(int i = 1; i <= tot; ++i)
			for(int j = i; j <= tot; ++j)
				ans += gcd(fac[i], fac[j]) == 1;
		
		printf("%d %d\n", n, ans);
	}
}
posted @ 2019-10-26 18:18  whx1003  阅读(114)  评论(0编辑  收藏  举报