使用类的习题(c++ prime plus)

第一题

vect.h:

#ifndef VECTOR_H_
#define VECTOR_H_
#include <iostream>
namespace VECTOR
{
    class Vector
    {
    public:
        enum Mode {RECT, POL};
    // RECT for rectangular, POL for Polar modes
    private:
        double x;      // horizontal value
        double y;      // vertical value
        double mag;    // length of vector
        double ang;    // direction of vector in degrees
        Mode mode;     // RECT or POL
    // private methods for setting values
        void set_mag();
        void set_ang();
        void set_x();
        void set_y();
    public:
        Vector();
         Vector(double n1, double n2, Mode form = RECT);
         void reset(double n1, double n2, Mode form = RECT);
         ~Vector();
         double xval() const {return x;}      // report x value
         double yval() const {return y;}      // report y value
         double magval() const {return mag;} // report magnitude
         double angval() const {return ang;} // report angle
         void polar_mode();                      // set mode to POL
         void rect_mode();                       // set mode to RECT
    // operator overloading
        Vector operator+(const Vector & b) const;
        Vector operator-(const Vector & b) const;
        Vector operator-() const;
        Vector operator*(double n) const;
    // friends
        friend Vector operator*(double n, const Vector & a);
        friend std::ostream &
               operator<<(std::ostream & os, const Vector & v);
    };

} // end namespace VECTOR
#endif

vect.cpp:

#include <cmath>
#include "vect.h" // includes <iostream>
using std::sqrt;
using std::sin;
using std::cos;
using std::atan;
using std::atan2;
using std::cout;

namespace VECTOR
{
    // compute degrees in one radian
    const double Rad_to_deg = 45.0 / atan(1.0);
    // should be about 57.2957795130823

    // private methods
    // calculates magnitude from x and y
    void Vector::set_mag()
    {
        mag = sqrt(x * x + y * y);
    }

    void Vector::set_ang()
    {
        if (x == 0.0 && y == 0.0)
            ang = 0.0;
        else
            ang = atan2(y, x);
    }

    // set x from polar coordinate
    void Vector::set_x()
    {
        x = mag * cos(ang);//mag为斜边
    }

    // set y from polar coordinate
    void Vector::set_y()
    {

        y = mag * sin(ang);
    }
// public methods
Vector::Vector() // default constructor
{
    x = y = mag = ang = 0.0;
    mode = RECT;
}

// construct vector from rectangular coordinates if form is r
// (the default) or else from polar coordinates if form is p
Vector::Vector(double n1, double n2, Mode form)
{
    mode = form;
    if (form == RECT)
     {
        x = n1;
        y = n2;
        set_mag();
        set_ang();
    }
    else if (form == POL)
    {
        mag = n1;
        ang = n2 / Rad_to_deg;
        set_x();
        set_y();
    }
    else
    {
        cout << "Incorrect 3rd argument to Vector() -- ";
        cout << "vector set to 0\n";
        x = y = mag = ang = 0.0;
        mode = RECT;
    }
}

// reset vector from rectangular coordinates if form is
// RECT (the default) or else from polar coordinates if
// form is POL
void Vector:: reset(double n1, double n2, Mode form)
{
    mode = form;
    if (form == RECT)
     {
        x = n1;
        y = n2;
        set_mag();
        set_ang();
    }
    else if (form == POL)
    {
        mag = n1;
        ang = n2 / Rad_to_deg;
        set_x();
        set_y();
    }
    else
    {
        cout << "Incorrect 3rd argument to Vector() -- ";
        cout << "vector set to 0\n";
        x = y = mag = ang = 0.0;
        mode = RECT;
    }
}

Vector::~Vector() // destructor
{
}

void Vector::polar_mode() // set to polar mode
{
    mode = POL;
}

void Vector::rect_mode() // set to rectangular mode
{
    mode = RECT;
}

// operator overloading
// add two Vectors
Vector Vector::operator+(const Vector & b) const
{
    return Vector(x + b.x, y + b.y);
}

// subtract Vector b from a
Vector Vector::operator-(const Vector & b) const
{
    return Vector(x - b.x, y - b.y);
}

// reverse sign of Vector
    Vector Vector::operator-() const
    {
        return Vector(-x, -y);
    }

    // multiply vector by n
    Vector Vector::operator*(double n) const
    {
        return Vector(n * x, n * y);
    }

    // friend methods
    // multiply n by Vector a
    Vector operator*(double n, const Vector & a)
    {
        return a * n;
    }

    // display rectangular coordinates if mode is RECT,
    // else display polar coordinates if mode is POL
    std::ostream & operator<<(std::ostream & os, const Vector & v)
    {
        if (v.mode == Vector::RECT)
            os << "(x,y) = (" << v.x << ", " << v.y << ")";
        else if (v.mode == Vector::POL)
        {
            os << "(m,a) = (" << v.mag << ", "
                << v.ang * Rad_to_deg << ")";
        }
        else
            os << "Vector object mode is invalid";
        return os;
    }
} // end namespace VECTOR

randwalk.cpp

#include <iostream>
#include <cstdlib>    // rand(), srand() prototypes
#include <ctime>      // time() prototype
#include "vect.h"
#include <fstream>
int main()
{
    using namespace std;
    using VECTOR::Vector;
    srand(time(0));  // seed random-number generator
    double direction;
    Vector step;
    Vector result(0.0, 0.0);
    unsigned long steps = 0;
    double target;
    double dstep;
    ofstream fout;
    fout.open("test.txt");
    cout << "Enter target distance (q to quit): ";
    while (cin >> target)
    {
        cout << "Enter step length: ";
        if (!(cin >> dstep))
            break;

        while (result.magval() < target)
        {
            direction = rand() % 360;
            step.reset(dstep, direction, Vector::POL);
            result = result + step;
            steps++;
        }
        fout << "After " << steps << " steps, the subject "
            "has the following location:\n";
        fout << result << endl;
        result.polar_mode();
        fout << " or\n" << result << endl;
        fout << "Average outward distance per step = "
            << result.magval()/steps << endl;
        fout<<endl;
        steps = 0;
        result.reset(0.0, 0.0);
        cout << "Enter target distance (q to quit): ";
    }
    cout << "Bye!\n";
    cin.clear();
    while (cin.get() != '\n')
        continue;
    fout.close();
    return 0;
}

第二题

vect.h

 

#ifndef VECTOR_H_
#define VECTOR_H_
#include <iostream>
namespace VECTOR
{
    class Vector
    {
    public:
        enum Mode {RECT, POL};
    // RECT for rectangular, POL for Polar modes
    private:
        double x;      // horizontal value
        double y;      // vertical value
        double mag;    // length of vector
        double ang;    // direction of vector in degrees
        Mode mode;     // RECT or POL
    // private methods for setting values
        double set_mag()const;
        double set_ang()const;
        void set_x(double mag,double ang);
        void set_y(double mag,double ang);
    public:
        Vector();
         Vector(double n1, double n2, Mode form = RECT);
         void reset(double n1, double n2, Mode form = RECT);
         ~Vector();
         double xval() const {return x;}      // report x value
         double yval() const {return y;}      // report y value
         double magval() const {return set_mag();} // report magnitude
         double angval() const {return set_ang();} // report angle
         void polar_mode();                      // set mode to POL
         void rect_mode();                       // set mode to RECT
    // operator overloading
        Vector operator+(const Vector & b) const;
        Vector operator-(const Vector & b) const;
        Vector operator-() const;
        Vector operator*(double n) const;
    // friends
        friend Vector operator*(double n, const Vector & a);
        friend std::ostream &
               operator<<(std::ostream & os, const Vector & v);
    };

} // end namespace VECTOR
#endif

 

#include <cmath>
#include "vect.h" // includes <iostream>
using std::sqrt;
using std::sin;
using std::cos;
using std::atan;
using std::atan2;
using std::cout;

namespace VECTOR
{
    // compute degrees in one radian
    const double Rad_to_deg = 45.0 / atan(1.0);
    // should be about 57.2957795130823

    // private methods
    // calculates magnitude from x and y
    double Vector::set_mag()const
    {
        return sqrt(x * x + y * y);
    }

    double  Vector::set_ang()const
    {
        if (x == 0.0 && y == 0.0)
            return 0.0;
        else
            return atan2(y, x);
    }

    // set x from polar coordinate
    void Vector::set_x(double mag,double ang)
    {
        x = mag * cos(ang);//mag为斜边
    }

    // set y from polar coordinate
    void Vector::set_y(double mag,double ang)
    {

        y = mag * sin(ang);
    }
// public methods
Vector::Vector() // default constructor
{
    x = y = mag = ang = 0.0;
    mode = RECT;
}

// construct vector from rectangular coordinates if form is r
// (the default) or else from polar coordinates if form is p
Vector::Vector(double n1, double n2, Mode form)
{
    mode = form;
    if (form == RECT)
     {
        x = n1;
        y = n2;
        set_mag();
        set_ang();
    }
    else if (form == POL)
    {
        mag = n1;
        ang = n2 / Rad_to_deg;
        set_x(mag,ang);
        set_y(mag,ang);
    }
    else
    {
        cout << "Incorrect 3rd argument to Vector() -- ";
        cout << "vector set to 0\n";
        x = y = mag = ang = 0.0;
        mode = RECT;
    }
}

// reset vector from rectangular coordinates if form is
// RECT (the default) or else from polar coordinates if
// form is POL
void Vector:: reset(double n1, double n2, Mode form)
{
    mode = form;
    if (form == RECT)
     {
        x = n1;
        y = n2;
        set_mag();
        set_ang();
    }
    else if (form == POL)
    {
        mag = n1;
        ang = n2 / Rad_to_deg;
        set_x(mag,ang);
        set_y(mag,ang);
    }
    else
    {
        cout << "Incorrect 3rd argument to Vector() -- ";
        cout << "vector set to 0\n";
        x = y = mag = ang = 0.0;
        mode = RECT;
    }
}

Vector::~Vector() // destructor
{
}

void Vector::polar_mode() // set to polar mode
{
    mode = POL;
}

void Vector::rect_mode() // set to rectangular mode
{
    mode = RECT;
}

// operator overloading
// add two Vectors
Vector Vector::operator+(const Vector & b) const
{
    return Vector(x + b.x, y + b.y);
}

// subtract Vector b from a
Vector Vector::operator-(const Vector & b) const
{
    return Vector(x - b.x, y - b.y);
}

// reverse sign of Vector
    Vector Vector::operator-() const
    {
        return Vector(-x, -y);
    }

    // multiply vector by n
    Vector Vector::operator*(double n) const
    {
        return Vector(n * x, n * y);
    }

    // friend methods
    // multiply n by Vector a
    Vector operator*(double n, const Vector & a)
    {
        return a * n;
    }

    // display rectangular coordinates if mode is RECT,
    // else display polar coordinates if mode is POL
    std::ostream & operator<<(std::ostream & os, const Vector & v)
    {
        if (v.mode == Vector::RECT)
            os << "(x,y) = (" << v.x << ", " << v.y << ")";
        else if (v.mode == Vector::POL)
        {
            os << "(m,a) = (" << v.mag << ", "
                << v.ang * Rad_to_deg << ")";
        }
        else
            os << "Vector object mode is invalid";
        return os;
    }
} // end namespace VECTOR

randwalk.cpp

#include <iostream>
#include <cstdlib>    // rand(), srand() prototypes
#include <ctime>      // time() prototype
#include "vect.h"
#include <fstream>
int main()
{
    using namespace std;
    using VECTOR::Vector;
    srand(time(0));  // seed random-number generator
    double direction;
    Vector step;
    Vector result(0.0, 0.0);
    unsigned long steps = 0;
    double target;
    double dstep;
    ofstream fout;
    fout.open("test.txt");
    cout << "Enter target distance (q to quit): ";
    while (cin >> target)
    {
        cout << "Enter step length: ";
        if (!(cin >> dstep))
            break;

        while (result.magval() < target)
        {
            direction = rand() % 360;
            step.reset(dstep, direction, Vector::POL);
            result = result + step;
            steps++;
        }
        fout << "After " << steps << " steps, the subject "
            "has the following location:\n";
        fout << result << endl;
        result.polar_mode();
        fout << " or\n" << result << endl;
        fout << "Average outward distance per step = "
            << result.magval()/steps << endl;
        fout<<endl;
        steps = 0;
        result.reset(0.0, 0.0);
        cout << "Enter target distance (q to quit): ";
    }
    cout << "Bye!\n";
    cin.clear();
    while (cin.get() != '\n')
        continue;
    fout.close();
    return 0;
}

第三题

randwalks.cpp

 

#include <iostream>
#include <cstdlib>    // rand(), srand() prototypes
#include <ctime>      // time() prototype
#include "vect.h"
int main()
{
    using namespace std;
    using VECTOR::Vector;
    int couts=0;
    srand(time(0));  // seed random-number generator
    double direction;
    Vector step;
    Vector result(0.0, 0.0);
    unsigned long steps = 0;
    unsigned long max_steps=0.0;
    unsigned long min_steps=0.0;
    double target;
    double dstep;
    double avg_steps=0.0;
    double stepss=65536;
    cout << "Enter target distance (q to quit): ";
    while (cin >> target)
    {
        cout << "Enter step length: ";
        if (!(cin >> dstep))
            break;

        while (result.magval() < target)
        {
            direction = rand() % 360;
            step.reset(dstep, direction, Vector::POL);
            result = result + step;
            steps++;
        }
        if(max_steps<steps)
        {
            max_steps=steps;
        }
        if(min_steps>steps)
        {
            min_steps=steps;
        }
        stepss+=steps;
        couts+=1;
        steps=0;
        result.reset(0.0,0.0);
        cout << "Enter target distance (q to quit): ";
    }
    avg_steps=stepss/couts;
    cout<<"Max_steps:"<<max_steps<<endl;
    cout<<"Min_steps:"<<min_steps<<endl;
    cout<<"avg_steps:"<<avg_steps<<endl;
    cout << "Bye!\n";
    cin.clear();
    while (cin.get() != '\n')
        continue;
    return 0;
}

 

第4题

mytimeh

#ifndef MYTIME3_H_
#define MYTIME3_H_
#include <iostream>

class Time
{
private:
    int hours;
    int minutes;
public:
    Time();
    Time(int h, int m = 0);
    void AddMin(int m);
    void AddHr(int h);
    void Reset(int h = 0, int m = 0);
    friend Time operator+(const Time & a,const Time & b);
    friend Time operator-(const Time & a,const Time & b);
    Time operator*(double n) const;
    friend Time operator*(double m, const Time & t)
        { return t * m; } // inline definition
    friend std::ostream & operator<<(std::ostream & os, const Time & t);
};

#endif

mytime3.cpp

#include "mytime3.h"

Time::Time()
{
    hours = minutes = 0;
}

Time::Time(int h, int m )
{
    hours = h;
    minutes = m;
}

void Time::AddMin(int m)
{
    minutes += m;
    hours += minutes / 60;
    minutes %= 60;
}

void Time::AddHr(int h)
{
    hours += h;
}

void Time::Reset(int h, int m)
{
    hours = h;
    minutes = m;
}

Time operator+(const Time & a,const Time & b)
{
    Time sum;
    sum.minutes = a.minutes + b.minutes;
    sum.hours = a.hours + b.hours + sum.minutes / 60;
    sum.minutes %= 60;
    return sum;
}

Time operator-(const Time & a,const Time &b) 
{
    Time diff;
    int tot1, tot2;
    tot1 = a.minutes + 60 * a.hours;
    tot2 = b.minutes + 60 * b.hours;
    diff.minutes = (tot2 - tot1) % 60;
    diff.hours = (tot2 - tot1) / 60;
    return diff;
}

Time Time::operator*(double mult) const
{
    Time result;
    long totalminutes = hours * mult * 60 + minutes * mult;
    result.hours = totalminutes / 60;
    result.minutes = totalminutes % 60;
    return result;
}

std::ostream & operator<<(std::ostream & os, const Time & t)
{
    os << t.hours << " hours, " << t.minutes << " minutes";
    return os;
}

 第五题

stonewt.h

 

#ifndef STONEWT_H_
#define STONEWT_H_
#include <iostream>
class Stonewt
{
    public:
        enum format{A,B,C};//三个依次对应的模式
    private:
        enum {Lbs_per_stn=14};
        format ft;
        double stone;
        int ipounds;
        double dpounds;
        double total;
        void update();
    public:
        Stonewt();
        Stonewt(double n,format f=A);
        Stonewt operator+(double n)const;
        Stonewt operator-(double n)const;
        Stonewt operator*(double n)const;
        friend Stonewt operator+(double n,const Stonewt & st);
        friend Stonewt operator-(double n,const Stonewt & st);
        friend Stonewt operator*(double n,const Stonewt & st);
        friend std::ostream & operator<<(std::ostream & os,const Stonewt & st);
};
#endif

 

stonewt.cpp

#include <iostream>
#include "stonewt.h"

using namespace std;


void Stonewt::update()
{
    if(ft==A)
    {
        stone=total;
        ipounds=(int)stone*Lbs_per_stn;
        dpounds=stone*Lbs_per_stn;
    }
    else if(ft==B)
    {
        ipounds=total;
        stone=ipounds/Lbs_per_stn;
        dpounds=ipounds;
    }
    else if(ft==C)
    {
        dpounds=total;
        stone=dpounds/Lbs_per_stn;
        ipounds=(int)dpounds;
    }
}

Stonewt::Stonewt()
{
    ft=A;
    total=0;
    update();
}

Stonewt::Stonewt(double n,format f)
{
    total=n;
    ft=f;
    update();
}

Stonewt Stonewt::operator+(double n)const
{
    Stonewt st(total+n,ft);
    return st;
}

Stonewt Stonewt::operator-(double n)const
{
    Stonewt st(total-n,ft);
    return st;
}

Stonewt Stonewt::operator*(double n)const
{
    Stonewt st(total*n,ft);
    return st;
}
Stonewt operator+(double n,const Stonewt &st)
{
    return (st+n);
}

Stonewt operator-(double n,const Stonewt &st)
{
    return (st-n);
}

Stonewt operator*(double n,const Stonewt & st)
{
    return (st*n);
}

std::ostream & operator<<(std::ostream & os, const Stonewt & st)
{
    if (st.ft == st.A)
    {
        cout << "Stone: " << st.stone ;
    }
    else if (st.ft == st.B)
    {
        cout << "pounds in int: " << st.ipounds ;
    }
    else if (st.ft == st.C)
    {
        cout << "pounds in double: " << st.dpounds;
    }
 
    return os;
}

uerstoneet.cpp

#include <iostream>
#include "stonewt.h"


using namespace std;

int main()
{
    Stonewt st1(100);
    Stonewt st2(100.1,Stonewt::A);
    Stonewt st3(100.3,Stonewt::C);

    Stonewt st4=13+st1;
    Stonewt st5=13+st2;
    Stonewt st6=13+st3;

    Stonewt st7 = st1 + 10;
    Stonewt st8 = st1 - 10;
    Stonewt st9 = st1 * 10;
 
    cout << st1 << endl;
    cout << st2 << endl;
    cout << st3 << endl;
    cout << st4 << endl;
    cout << st5 << endl;
    cout << st6 << endl;
    cout << st7 << endl;
    cout << st8 << endl;
    cout << st9 << endl;
}

第6题

complx.h

 

#ifndef COMPLX0_H_
#define COMPLX0_H_
#include <iostream>
class complx
{
    private:
        double R;
        double V;
    public:
        complx();
        complx(double R,double V);
        complx operator+(const complx & st);
        complx operator-(const complx & st);
        complx operator*(const complx & st);
        friend complx operator~(const complx & st);
        friend complx operator*(int x,const complx &  st);
        friend std::istream & operator>>(std:: istream & is,complx & st);
        friend std::ostream & operator<<(std::ostream & os,const complx & st);
};



#endif

 

complx.cpp

#include <iostream>
#include "complx0.h"

using namespace std;


complx::complx()
{
    R=V=0;
}

complx::complx(double R,double V)
{
    this->R=R;
    this->V=V;
}

complx complx::operator+(const complx & st)
{
    return complx(R+st.R,V+st.V);
}


complx complx::operator-(const complx & st)
{
    return complx(R-st.R,V-st.V);
}

complx complx::operator*(const complx & st)
{
    return complx(R*st.R,V*st.V);
}

complx operator~(const complx & st)
{
    return complx(st.R,-st.V);
}

complx operator*(int x,const complx & st)
{
    return complx(x*st.R,x*st.V);
}

std::istream & operator>>(std::istream & is,complx & st)
{
    cout<<"real:"<<endl;
    is>>st.R;
    if(!is)
    {
        return is;
    }
    cout<<"V:"<<endl;
    is>>st.V;
    cin.get();
    return is;
}

std::ostream & operator<<(std::ostream & os,const complx &st)
{
    os<<"R:"<<st.R<<"V:"<<st.V<<endl;
    return os;
}

usercomplx.cpp

#include <iostream>
using namespace std;
#include "complx0.h"    // to avoid confusion with complex.h
int main()
{
    complx a(3.0, 4.0); // initialize to (3,4i)
    complx c;
    cout << "Enter a complex number (q to quit):\n";
    while (cin >> c)
    {
        cout << "c is " << c << '\n';
        cout << "complex conjugate is " << ~c << '\n';
        cout << "a is " << a <<'\n';
        cout << "a + c is " << a + c << '\n';
        cout << "a - c is " << a - c << '\n';
        cout << "a * c is " << a * c << '\n';
        cout << "2 * c is " << 2 * c << '\n';
        cout << "Enter a complex number (q to quit):\n";
    }
    cout << "Done!\n";
    return 0;
}

 

posted @ 2022-08-06 16:46  术术子  阅读(28)  评论(0编辑  收藏  举报