An interesting math problem
Verify the regular solid shapes only can be five types.
证明正多面体只能有5种.
First: Look at the proof procedure below:
Yes, it's just so easy :0证明正多面体只能有5种.
First: Look at the proof procedure below:
1
/*证明正多面体只能有5种
2
*分别是正 4, 6, 8, 12, 20面体
3
*
4
* First: 欧拉公式 V+F-E=2
5
* 假设每个面均为 正m边形 每个顶点都有n条棱 >> 显然的 m>=3 & n>=3 1
6
* Second: m*F = 2E
7
* Third: n*V = 2E
8
*
9
* 由First, Second, Third得到下式
10
* 2E/n + 2E/m -E = 2 >> 1/n + 1/m = 1/E + 1/2
11
* 即 1/n + 1/m > 1/2
12
* 上式中得到 m & n 不能同时大于3 2
13
*
14
* Manual :由1,2可得到 m,n至少一个等于3,分情况讨论后即可得出结果
15
* Automation :1,2作为条件 得出结果 如下方法实现
16
*/
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedBlockStart.gif)
2
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
3
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
4
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
5
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
6
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
7
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
8
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
9
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
10
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
11
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
12
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
13
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
14
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
15
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
16
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedBlockEnd.gif)
Then I try to carve it out with code
Second: The easiest solution
1
static void GetResult()
2
{
3
for (double i = 3; i < int.MaxValue; i++)
4
{
5
for (double j = 3; j < int.MaxValue; j++)
6
{
7
if (1/i + 1/j > 1.0/2.0)
8
{
9
Console.WriteLine("i={0},j={1}", i.ToString(),j.ToString());
10
}
11
}
12
}
13
}
![](https://www.cnblogs.com/Images/OutliningIndicators/None.gif)
2
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedBlockStart.gif)
3
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
4
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif)
5
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
6
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif)
7
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
8
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockStart.gif)
9
![](https://www.cnblogs.com/Images/OutliningIndicators/InBlock.gif)
10
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif)
11
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif)
12
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedSubBlockEnd.gif)
13
![](https://www.cnblogs.com/Images/OutliningIndicators/ExpandedBlockEnd.gif)
Also, it's very easy, and I'm sure it is not a good methd. The biggest problem is that the efficiency is so low.
It must has better solutions to solve this question.
Log it here and fix the efficiency problem later.