操作系统--探查和收集信息
上一节讲道二级引导器不做具体的加载任务,而是主要解析内核文件、收集机器环境信息,那具体做些什么事呢?
在二级引导器中,要检查CPU是否支持64位的工作模式、收集内存布局信息,查看是不是符合我们操作系统的最低运行要求,还要设置操作系统需要的MMU页表、设置显卡模式、释放中文字体文件等。
检查与收集机器信息
如果ldrkrl_entry()
函数是总裁,那么init_bstartparm()
则是经理,它负责管理检查CPU模式、收集内存信息,设置内核栈,设置内核字体、建立内核MMU页表数据。
在bstartparm.c文件中实现一个init_bstartparm(),实现如下:
//初始化machbstart_t结构体,清0,并设置一个标志
void machbstart_t_init(machbstart_t* initp)
{
memset(initp,0,sizeof(machbstart_t));
initp->mb_migc=MBS_MIGC;
return;
}
void init_bstartparm()
{
machbstart_t* mbsp = MBSPADR;//1MB的内存地址
machbstart_t_init(mbsp);
return;
}
init_bstartparm() 函数只是调用了一个 machbstart_t_init() 函数,在 1MB 内存地址处初始化了一个机器信息结构 machbstart_t,后面随着干活越来越多,还会调用更多的函数的。
检查CPU
首先要检查我们的CPU,因为它是执行程序的关键,要搞清楚它能执行什么形式的代码,支持64位长模式吗?
这交给init_chkcpu()函数,由于用CPUID指令来检查CPU是否支持64位长模式,需要chk_cpuid、chk_cpu_longmode两个帮手来做两件事,一个是检查CPU是否支持CPUID指令,然后另一个用CPUID指令检查CPU是否支持64长模式。
//通过改写Eflags寄存器的第21位,观察其位的变化判断是否支持CPUID
int chk_cpuid()
{
int rets = 0;
__asm__ __volatile__(
"pushfl \n\t"
"popl %%eax \n\t"
"movl %%eax,%%ebx \n\t"
"xorl $0x0200000,%%eax \n\t"
"pushl %%eax \n\t"
"popfl \n\t"
"pushfl \n\t"
"popl %%eax \n\t"
"xorl %%ebx,%%eax \n\t"
"jz 1f \n\t"
"movl $1,%0 \n\t"
"jmp 2f \n\t"
"1: movl $0,%0 \n\t"
"2: \n\t"
: "=c"(rets)
:
:);
return rets;
}
//检查CPU是否支持长模式
int chk_cpu_longmode()
{
int rets = 0;
__asm__ __volatile__(
"movl $0x80000000,%%eax \n\t"
"cpuid \n\t" //把eax中放入0x80000000调用CPUID指令
"cmpl $0x80000001,%%eax \n\t"//看eax中返回结果
"setnb %%al \n\t" //不为0x80000001,则不支持0x80000001号功能
"jb 1f \n\t"
"movl $0x80000001,%%eax \n\t"
"cpuid \n\t"//把eax中放入0x800000001调用CPUID指令,检查edx中的返回数据
"bt $29,%%edx \n\t" //长模式 支持位 是否为1
"setcb %%al \n\t"
"1: \n\t"
"movzx %%al,%%eax \n\t"
: "=a"(rets)
:
:);
return rets;
}
//检查CPU主函数
void init_chkcpu(machbstart_t *mbsp)
{
if (!chk_cpuid())
{
kerror("Your CPU is not support CPUID sys is die!");
CLI_HALT();
}
if (!chk_cpu_longmode())
{
kerror("Your CPU is not support 64bits mode sys is die!");
CLI_HALT();
}
mbsp->mb_cpumode = 0x40;//如果成功则设置机器信息结构的cpu模式为64位
return;
}
检查 CPU 是否支持 CPUID 指令和检查 CPU 是否支持长模式,只要其中一步检查失败,我们就打印一条相应的提示信息,然后主动死机。
最后设置机器信息结构中的 mb_cpumode 字段为 64,mbsp 正是传递进来的机器信息 machbstart_t 结构体的指针。
获取内存布局
CPU检查完成之后,看下获取内存布局信息,物理内存在物理地址空间中是一段一段的,描述一段内存有一个数据结构,如下所示
#define RAM_USABLE 1 //可用内存
#define RAM_RESERV 2 //保留内存不可使用
#define RAM_ACPIREC 3 //ACPI表相关的
#define RAM_ACPINVS 4 //ACPI NVS空间
#define RAM_AREACON 5 //包含坏内存
typedef struct s_e820{
u64_t saddr; /* 内存开始地址 */
u64_t lsize; /* 内存大小 */
u32_t type; /* 内存类型 */
}e820map_t;
获取内存布局信息就是获取这个结构体的数组,由init_mem函数来实现,该函数主要完成两件事:
- 1、获取上述结构体数组
- 2、检查内存大小,因为内核对内存容量有要求,不能太小
实现如下:
#define ETYBAK_ADR 0x2000
#define PM32_EIP_OFF (ETYBAK_ADR)
#define PM32_ESP_OFF (ETYBAK_ADR+4)
#define E80MAP_NR (ETYBAK_ADR+64)//保存e820map_t结构数组元素个数的地址
#define E80MAP_ADRADR (ETYBAK_ADR+68) //保存e820map_t结构数组的开始地址
void init_mem(machbstart_t *mbsp)
{
e820map_t *retemp;
u32_t retemnr = 0;
mmap(&retemp, &retemnr);
if (retemnr == 0)
{
kerror("no e820map\n");
}
//根据e820map_t结构数据检查内存大小
if (chk_memsize(retemp, retemnr, 0x100000, 0x8000000) == NULL)
{
kerror("Your computer is low on memory, the memory cannot be less than 128MB!");
}
mbsp->mb_e820padr = (u64_t)((u32_t)(retemp));//把e820map_t结构数组的首地址传给mbsp->mb_e820padr
mbsp->mb_e820nr = (u64_t)retemnr;//把e820map_t结构数组元素个数传给mbsp->mb_e820nr
mbsp->mb_e820sz = retemnr * (sizeof(e820map_t));//把e820map_t结构数组大小传给mbsp->mb_e820sz
mbsp->mb_memsz = get_memsize(retemp, retemnr);//根据e820map_t结构数据计算内存大小。
return;
}
上面最难的是mmap函数的实现,但可以通过调用BIOS的机制,就会发现,只要调用了BIOS终端,就能获取e820map结构数组
mmap 的函数调用关系:
void mmap(e820map_t **retemp, u32_t *retemnr)
{
realadr_call_entry(RLINTNR(0), 0, 0);
*retemnr = *((u32_t *)(E80MAP_NR));
*retemp = (e820map_t *)(*((u32_t *)(E80MAP_ADRADR)));
return;
}
mmap 函数正是通过前面讲的 realadr_call_entry 函数,来调用实模式下的 _getmmap 函数的,并且在 _getmmap 函数中调用 BIOS 中断的。
_getmmap:
push ds
push es
push ss
mov esi,0
mov dword[E80MAP_NR],esi
mov dword[E80MAP_ADRADR],E80MAP_ADR ;e820map结构体开始地址
xor ebx,ebx
mov edi,E80MAP_ADR
loop:
mov eax,0e820h ;获取e820map结构参数
mov ecx,20 ;e820map结构大小
mov edx,0534d4150h ;获取e820map结构参数必须是这个数据
int 15h ;BIOS的15h中断
jc .1
add edi,20
cmp edi,E80MAP_ADR+0x1000
jg .1
inc esi
cmp ebx,0
jne loop ;循环获取e820map结构
jmp .2
.1:
mov esi,0 ;出错处理,e820map结构数组元素个数为0
.2:
mov dword[E80MAP_NR],esi ;e820map结构数组元素个数
pop ss
pop es
pop ds
ret
init_mem 函数在调用 mmap 函数后,就会得到 e820map 结构数组,其首地址和数组元素个数由 retemp,retemnr 两个变量分别提供。
初始化内核栈
因为操作系统是 C 语言写的,所以需要有栈,即给即将运行的内核初始化一个栈,就是在机器信息结构machbstart_t中,记录下栈地址和栈大小,供内核在启动时使用。
#define IKSTACK_PHYADR (0x90000-0x10)
#define IKSTACK_SIZE 0x1000
//初始化内核栈
void init_krlinitstack(machbstart_t *mbsp)
{
if (1 > move_krlimg(mbsp, (u64_t)(0x8f000), 0x1001))
{
kerror("iks_moveimg err");
}
mbsp->mb_krlinitstack = IKSTACK_PHYADR;//栈顶地址
mbsp->mb_krlitstacksz = IKSTACK_SIZE; //栈大小是4KB
return;
}
其中调用了一个move_krlimg函数,主要负责判断一个地址空间是否和内存中存放的内容有冲突。
因为我们的内存中已经放置了机器信息结构、内存视图结构数组、二级引导器、内核映像文件,所以在处理内存空间时不能和内存中已经存在的他们冲突,否则就要覆盖他们的数据。0x8f000~(0x8f000+0x1001),正是我们的内核栈空间,我们需要检测它是否和其它空间有冲突
放置内核文件与字库文件
放置内核文件和字库文件这一步,也非常简单,甚至放置其它文件也一样。
因为我们的内核已经编译成了一个独立的二进制程序,和其它文件一起被打包到映像文件中了。所以我们必须要从映像中把它解包出来,将其放在特定的物理内存空间中才可以,放置字库文件和放置内核文件的原理一样。
代码如下:
//放置内核文件
void init_krlfile(machbstart_t *mbsp)
{
//在映像中查找相应的文件,并复制到对应的地址,并返回文件的大小,这里是查找kernel.bin文件
u64_t sz = r_file_to_padr(mbsp, IMGKRNL_PHYADR, "kernel.bin");
if (0 == sz)
{
kerror("r_file_to_padr err");
}
//放置完成后更新机器信息结构中的数据
mbsp->mb_krlimgpadr = IMGKRNL_PHYADR;
mbsp->mb_krlsz = sz;
//mbsp->mb_nextwtpadr始终要保持指向下一段空闲内存的首地址
mbsp->mb_nextwtpadr = P4K_ALIGN(mbsp->mb_krlimgpadr + mbsp->mb_krlsz);
mbsp->mb_kalldendpadr = mbsp->mb_krlimgpadr + mbsp->mb_krlsz;
return;
}
//放置字库文件
void init_defutfont(machbstart_t *mbsp)
{
u64_t sz = 0;
//获取下一段空闲内存空间的首地址
u32_t dfadr = (u32_t)mbsp->mb_nextwtpadr;
//在映像中查找相应的文件,并复制到对应的地址,并返回文件的大小,这里是查找font.fnt文件
sz = r_file_to_padr(mbsp, dfadr, "font.fnt");
if (0 == sz)
{
kerror("r_file_to_padr err");
}
//放置完成后更新机器信息结构中的数据
mbsp->mb_bfontpadr = (u64_t)(dfadr);
mbsp->mb_bfontsz = sz;
//更新机器信息结构中下一段空闲内存的首地址
mbsp->mb_nextwtpadr = P4K_ALIGN((u32_t)(dfadr) + sz);
mbsp->mb_kalldendpadr = mbsp->mb_bfontpadr + mbsp->mb_bfontsz;
return;
}
都是调用 r_file_to_padr 函数在映像中查找 kernel.bin 和 font.fnt 文件,并复制到对应的空闲内存空间中。
注:
由于内核是代码数据,所以必须要复制到指定的内存空间中
建立MMU页表数据
在二级引导器中建立 MMU 页表数据,目的就是要在内核加载运行之初开启长模式时,MMU 需要的页表数据已经准备好了。
由于我们的内核虚拟地址空间从 0xffff800000000000 开始,所以我们这个虚拟地址映射到从物理地址 0 开始,大小都是 0x400000000 即 16GB,也就是说我们要虚拟地址空间:0xffff800000000000~0xffff800400000000 映射到物理地址空间 0~0x400000000。
为了简化编程,使用长模式下的 2MB 分页方式,代码实现如下:
#define KINITPAGE_PHYADR 0x1000000
void init_bstartpages(machbstart_t *mbsp)
{
//顶级页目录
u64_t *p = (u64_t *)(KINITPAGE_PHYADR);//16MB地址处
//页目录指针
u64_t *pdpte = (u64_t *)(KINITPAGE_PHYADR + 0x1000);
//页目录
u64_t *pde = (u64_t *)(KINITPAGE_PHYADR + 0x2000);
//物理地址从0开始
u64_t adr = 0;
if (1 > move_krlimg(mbsp, (u64_t)(KINITPAGE_PHYADR), (0x1000 * 16 + 0x2000)))
{
kerror("move_krlimg err");
}
//将顶级页目录、页目录指针的空间清0
for (uint_t mi = 0; mi < PGENTY_SIZE; mi++)
{
p[mi] = 0;
pdpte[mi] = 0;
}
//映射
for (uint_t pdei = 0; pdei < 16; pdei++)
{
pdpte[pdei] = (u64_t)((u32_t)pde | KPDPTE_RW | KPDPTE_P);
for (uint_t pdeii = 0; pdeii < PGENTY_SIZE; pdeii++)
{//大页KPDE_PS 2MB,可读写KPDE_RW,存在KPDE_P
pde[pdeii] = 0 | adr | KPDE_PS | KPDE_RW | KPDE_P;
adr += 0x200000;
}
pde = (u64_t *)((u32_t)pde + 0x1000);
}
//让顶级页目录中第0项和第((KRNL_VIRTUAL_ADDRESS_START) >> KPML4_SHIFT) & 0x1ff项,指向同一个页目录指针页
p[((KRNL_VIRTUAL_ADDRESS_START) >> KPML4_SHIFT) & 0x1ff] = (u64_t)((u32_t)pdpte | KPML4_RW | KPML4_P);
p[0] = (u64_t)((u32_t)pdpte | KPML4_RW | KPML4_P);
//把页表首地址保存在机器信息结构中
mbsp->mb_pml4padr = (u64_t)(KINITPAGE_PHYADR);
mbsp->mb_subpageslen = (u64_t)(0x1000 * 16 + 0x2000);
mbsp->mb_kpmapphymemsz = (u64_t)(0x400000000);
return;
}
映射的核心逻辑由两重循环控制,外层循环控制页目录指针顶,只有 16 项,其中每一项都指向一个页目录,每个页目录中有 512 个物理页地址。
物理地址每次增加 2MB,这是由 26~30 行的内层循环控制,每执行一次外层循环就要执行 512 次内层循环。最后,顶级页目录中第 0 项和第 ((KRNL_VIRTUAL_ADDRESS_START) >> KPML4_SHIFT) & 0x1ff 项,指向同一个页目录指针页,这样的话就能让虚拟地址:0xffff800000000000~0xffff800400000000 和虚拟地址:0~0x400000000,访问到同一个物理地址空间 0~0x400000000,这样做是有目的,内核在启动初期,虚拟地址和物理地址要保持相同。
设置图形模式
在计算机加电启动时,计算机上显卡会自动进入文本模式,文本模式只能显示 ASCII 字符,不能显示汉字和图形,所以我们要让显卡切换到图形模式。
切换显卡模式依然要用 BIOS 中断,在实模式切换显卡模式的汇编代码,使用C函数调用它们,代码如下:
void init_graph(machbstart_t* mbsp)
{
//初始化图形数据结构
graph_t_init(&mbsp->mb_ghparm);
//获取VBE模式,通过BIOS中断
get_vbemode(mbsp);
//获取一个具体VBE模式的信息,通过BIOS中断
get_vbemodeinfo(mbsp);
//设置VBE模式,通过BIOS中断
set_vbemodeinfo();
return;
}
VBE 是显卡的一个图形规范标准,它定义了显卡的几种图形模式,每个模式包括屏幕分辨率,像素格式与大小,显存大小。调用 BIOS 10h 中断可以返回这些数据结构
这里我们选择使用了 VBE 的 118h 模式,该模式下屏幕分辨率为 1024x768,显存大小是 16.8MB。显存开始地址一般为 0xe0000000。屏幕分辨率为 1024x768,即把屏幕分成 768 行,每行 1024 个像素点,但每个像素点占用显存的 32 位数据(4 字节,红、绿、蓝、透明各占 8 位)。我们只要往对应的显存地址写入相应的像素数据,屏幕对应的位置就能显示了。
每个像素点,我们可以用如下数据结构表示:
typedef struct s_PIXCL
{
u8_t cl_b; //蓝
u8_t cl_g; //绿
u8_t cl_r; //红
u8_t cl_a; //透明
}__attribute__((packed)) pixcl_t;
#define BGRA(r,g,b) ((0|(r<<16)|(g<<8)|b))
//通常情况下用pixl_t 和 BGRA宏
typedef u32_t pixl_t;
屏幕像素点和显存位置对应的计算方式:
u32_t* dispmem = (u32_t*)mbsp->mb_ghparm.gh_framphyadr;
dispmem[x + (y * 1024)] = pix;
//x,y是像素的位置
串联
所有的实施工作的函数已经完成了,需要在init_bstartparm()函数中把他们串联起来,即按照事情的先后顺序,一次调用它们完成相应的工作,实现检查、收集机器信息,设置工作环境。
void init_bstartparm()
{
machbstart_t *mbsp = MBSPADR;
machbstart_t_init(mbsp);
//检查CPU
init_chkcpu(mbsp);
//获取内存布局
init_mem(mbsp);
//初始化内核栈
init_krlinitstack(mbsp);
//放置内核文件
init_krlfile(mbsp);
//放置字库文件
init_defutfont(mbsp);
init_meme820(mbsp);
//建立MMU页表
init_bstartpages(mbsp);
//设置图形模式
init_graph(mbsp);
return;
}
至此,init_bstartparm() 函数就成功完成了它的使命。
显示Logo
logo 文件是个 24 位的位图文件,目前为了简单起见,我们只支持这种格式的图片文件。下面我们去调用这个函数。
void logo(machbstart_t* mbsp)
{
u32_t retadr=0,sz=0;
//在映像文件中获取logo.bmp文件
get_file_rpadrandsz("logo.bmp",mbsp,&retadr,&sz);
if(0==retadr)
{
kerror("logo getfilerpadrsz err");
}
//显示logo文件中的图像数据
bmp_print((void*)retadr,mbsp);
return;
}
void init_graph(machbstart_t* mbsp)
{
//……前面代码省略
//显示
logo(mbsp);
return;
}
在图格式的文件中,除了文件头的数据就是图形像素点的数据,只不过 24 位的位图每个像素占用 3 字节,并且位置是倒排的,即第一个像素的数据是在文件的最后,依次类推。我们只要依次将位图文件的数据,按照倒排次序写入显存中,这样就可以显示了
二级引导器的文件和 logo 文件打包成映像文件,然后放在虚拟硬盘中。
进入Cosmos
在调用Cosmos第一个C函数之前,依然要写一小段汇编代码,切换CPU到长模式,初始化CPU寄存器和C语言要用的栈。因为目前代码执行流在二级引导器,进入到COsmos中这样二级引导器中初始化过的东西都不能用了。
因为CPU进入长模式,寄存器的位宽都变了,所以需要建立一个 init_entry.asm 文件,重新初始化,代码如下:
[section .start.text]
[BITS 32]
_start:
cli
mov ax,0x10
mov ds,ax
mov es,ax
mov ss,ax
mov fs,ax
mov gs,ax
lgdt [eGdtPtr]
;开启 PAE
mov eax, cr4
bts eax, 5 ; CR4.PAE = 1
mov cr4, eax
mov eax, PML4T_BADR ;加载MMU顶级页目录
mov cr3, eax
;开启 64bits long-mode
mov ecx, IA32_EFER
rdmsr
bts eax, 8 ; IA32_EFER.LME =1
wrmsr
;开启 PE 和 paging
mov eax, cr0
bts eax, 0 ; CR0.PE =1
bts eax, 31
;开启 CACHE
btr eax,29 ; CR0.NW=0
btr eax,30 ; CR0.CD=0 CACHE
mov cr0, eax ; IA32_EFER.LMA = 1
jmp 08:entry64
[BITS 64]
entry64:
mov ax,0x10
mov ds,ax
mov es,ax
mov ss,ax
mov fs,ax
mov gs,ax
xor rax,rax
xor rbx,rbx
xor rbp,rbp
xor rcx,rcx
xor rdx,rdx
xor rdi,rdi
xor rsi,rsi
xor r8,r8
xor r9,r9
xor r10,r10
xor r11,r11
xor r12,r12
xor r13,r13
xor r14,r14
xor r15,r15
mov rbx,MBSP_ADR
mov rax,KRLVIRADR
mov rcx,[rbx+KINITSTACK_OFF]
add rax,rcx
xor rcx,rcx
xor rbx,rbx
mov rsp,rax
push 0
push 0x8
mov rax,hal_start ;调用内核主函数
push rax
dw 0xcb48
jmp $
[section .start.data]
[BITS 32]
x64_GDT:
enull_x64_dsc: dq 0
ekrnl_c64_dsc: dq 0x0020980000000000 ; 64-bit 内核代码段
ekrnl_d64_dsc: dq 0x0000920000000000 ; 64-bit 内核数据段
euser_c64_dsc: dq 0x0020f80000000000 ; 64-bit 用户代码段
euser_d64_dsc: dq 0x0000f20000000000 ; 64-bit 用户数据段
eGdtLen equ $ - enull_x64_dsc ; GDT长度
eGdtPtr: dw eGdtLen - 1 ; GDT界限
dq ex64_GDT
上述代码中,1~11 行表示加载 70~75 行的 GDT,13~17 行是设置 MMU 并加载在二级引导器中准备好的 MMU 页表,19~30 行是开启长模式并打开 Cache,34~54 行则是初始化长模式下的寄存器,55~61 行是读取二级引导器准备的机器信息结构中的栈地址,并用这个数据设置 RSP 寄存器。
最关键的是 63~66 行,它开始把 8 和 hal_start 函数的地址压入栈中。dw 0xcb48 是直接写一条指令的机器码——0xcb48,这是一条返回指令。这个返回指令有点特殊,它会把栈中的数据分别弹出到 RIP,CS 寄存器,这正是为了调用我们 Cosmos 的第一个 C 函数 hal_start。