操作系统 -- 虚拟地址与物理地址

为什么需要虚拟地址

(多程序并发场景)如果一台计算机内存中运行一个程序A,内存中又放了一道程序B,程序A和程序B各自运行一秒,如此循环,直到其中之一结束,这个场景下就会产生一些问题(此处只关心内存相关的几个核心问题)

  • 1、谁来保证程序A跟程序B没有内存地址的冲突?换句话说,就是程序 A、B 各自放在什么内存地址,这个问题是由 A、B 程序协商,还是由操作系统决定
  • 2、怎么保证程序A跟程序B不会互相读写各自的内存空间?用保护模式就能解决。
  • 3、如何解决内存容量问题?程序 A 和程序 B,在不断开发迭代中程序代码占用的空间会越来越大,导致内存装不下。
  • 4、还要考虑一个扩展后的复杂情况,如果不只程序 A、B,还可能有程序 C、D、E、F、G……它们分别由不同的公司开发,而每台计算机的内存容量不同。这时候,又对我们的内存方案有怎样的影响呢?

要想完美的解决以上最核心的4个问题,一个较好的方案是:让所有的程序都各自享有一个从0开始到最大地址的空间,这个地址空间是独立的,是该程序私有的,其它程序既看不到,也不能访问该地址空间,找个地地址空间和其他程序无关,和具体的计算机也无关,这个方案就是虚拟地址。

发现多道程序同时运行有很多问题,都是内存相关的问题,内存需要隔离和保护。从而提出了虚拟地址与物理地址分离,让应用程序从实际的物理内存中解耦出来。

虚拟地址

虚拟地址是逻辑上存在的一个数据值。
可以使用objdump工具反汇编上节的Hello World二进制文件,就会得到如下的代码片段:

00000000000004e8 <_init>:
 4e8:  48 83 ec 08            sub    $0x8,%rsp
 4ec:  48 8b 05 f5 0a 20 00   mov    0x200af5(%rip),%rax        # 200fe8 <__gmon_start__>
 4f3:  48 85 c0               test   %rax,%rax
 4f6:  74 02                  je     4fa <_init+0x12>
 4f8:  ff d0                  callq  *%rax
 4fa:  48 83 c4 08            add    $0x8,%rsp
 4fe:  c3                     retq 

上述代码中,左边第一列数据就是虚拟地址,第三列中是程序指令,如:“mov 0x200af5(%rip),%rax,je 4fa,callq *%rax”指令中的数据都是虚拟地址。

PS:
那这个虚拟地址是谁产生了呢?

答案是链接器,在开发软件经过编译步骤之后,就需要链接成可执行文件才可以运行,而链接器的主要工作就是把多个代码模块组装在一起,并解决模块之间的引用,即处理程序代码间的地址引用,形成程序运行的静态内存空间视图。

物理地址

虽然虚拟地址解决了很多问题,但虚拟地址毕竟只是逻辑上存在的地址,无法作用于硬件电路上,程序装进内存中需要执行,就需要和内存打交道,从内存中取得指令和数据,而内存只认一种地址,那就是物理地址

PS:什么是物理地址呢?

物理地址在逻辑上也是一个数据,只不过这个数据会被地址译码器等电子器件变成电子信号,放在地址总线上,地址总线电子信号的各种组合就可以选择到内存的储存单元了。

虚拟地址到物理地址的转换

明白了虚拟地址和物理地址之后,发现虚拟地址必须转换成物理地址,这样程序才能正常执行。要转换必须要转换结构,它相当于一个函数:p=f(v),输入虚拟地址 v,输出物理地址 p。

PS:要怎么实现这个函数呢?
用软件方式实现太低效,用硬件实现没有灵活性,最终就用了软硬件结合的方式实现,它就是 MMU(内存管理单元)。MMU 可以接受软件给出的地址对应关系数据,进行地址转换

逻辑上的MMU工作原理框架图:

上图中展示MMU通过地址关系转换表,将 0x80000~0x84000 的虚拟地址空间转换成 0x10000~0x14000 的物理地址空间,而地址关系转换表本身则是放物理内存中的。

系统设计者最后采用一个折中的方案,即把虚拟地址空间和物理地址空间都分成同等大小的块,也称为页,按照虚拟页和物理页进行转换。根据软件配置不同,这个页的大小可以设置为 4KB、2MB、4MB、1GB,这样就进入了现代内存管理模式——分页模型。
分页模型框架:

结合图片可以看出,一个虚拟页可以对应到一个物理页,由于页大小一经配置就是固定的,所以在地址关系转换表中,只要存放虚拟页地址对应的物理页地址就行了。

MMU

MMU 即内存管理单元,是用硬件电路逻辑实现的一个地址转换器件,它负责接受虚拟地址和地址关系转换表,以及输出物理地址。
MMU增加了转换的灵活性,它的实现方式是硬件执行转换过程,但又依赖于软件提供的地址转换表。

x86 CPU 要想开启 MMU,就必须先开启保护模式或者长模式,实模式下是不能开启 MMU 的。
由于保护模式的内存模型是分段模型,它并不适合于 MMU 的分页模型,所以我们要使用保护模式的平坦模式,这样就绕过了分段模型。这个平坦模型和长模式下忽略段基址和段长度是异曲同工的。地址产生的过程如下所示。

如果不开启 MMU,在保护模式下可以关闭 MMU,这个线性地址就是物理地址。因为长模式下的分段弱化了地址空间的隔离,所以开启 MMU 是必须要做的,开启 MMU 才能访问内存地址空间。

MMU页表

页表:它描述了虚拟地址到物理地址的转换关系,也可以说是虚拟页到物理页的映射关系,所以称为页表。
为了增加灵活性和节约物理内存空间(因为页表是放在物理内存中的),所以页表中并不存放虚拟地址和物理地址的对应关系,只存放物理页面的地址,MMU 以虚拟地址为索引去查表返回物理页面地址,而且页表是分级的,总体分为三个部分:一个顶级页目录,多个中级页目录,最后才是页表,逻辑结构图如下.

从上面可以看出,一个虚拟地址被分成从左至右四个位段。第一个位段索引顶级页目录中一个项,该项指向一个中级页目录,然后用第二个位段去索引中级页目录中的一个项,该项指向一个页目录,再用第三个位段去索引页目录中的项,该项指向一个物理页地址,最后用第四个位段作该物理页内的偏移去访问物理内存。这就是 MMU 的工作流程。

保护模式下的分页

分页模式原理的,分页模式的灵活性、通用性、安全性,是现代操作系统内存管理的基石,更是事实上的标准内存管理模型,现代商用操作系统都必须以此为基础实现虚拟内存功能模块。

保护模式下的分页大小通常有两种,一种是 4KB 大小的页,一种是 4MB 大小的页。分页大小的不同,会导致虚拟地址位段的分隔和页目录的层级不同,但虚拟页和物理页的大小始终是等同的。

保护模式下的分页——4KB 页

该分页方式下,32 位虚拟地址被分为三个位段:页目录索引、页表索引、页内偏移,只有一级页目录,其中包含 1024 个条目 ,每个条目指向一个页表,每个页表中有 1024 个条目。其中一个条目就指向一个物理页,每个物理页 4KB。这正好是 4GB 地址空间。如下图所示。

图中 CR3 就是 CPU 的一个 32 位的寄存器,MMU 就是根据这个寄存器找到页目录的。下面,我们看看当前分页模式下的 CR3、页目录项、页表项的格式。

可以看到,页目录项、页表项都是 4 字节 32 位,1024 个项正好是 4KB(一个页),因此它们的地址始终是 4KB 对齐的,所以低 12 位才可以另作它用,形成了页面的相关属性,如是否存在、是否可读可写、是用户页还是内核页、是否已写入、是否已访问等。

保护模式下的分页——4MB 页

该分页方式下,32 位虚拟地址被分为两个位段:页表索引、页内偏移,只有一级页目录,其中包含 1024 个条目。其中一个条目指向一个物理页,每个物理页 4MB,正好为 4GB 地址空间,如下图所示。

CR3 还是 32 位的寄存器,只不过不再指向顶级页目录了,而是指向一个 4KB 大小的页表,这个页表依然要 4KB 地址对齐,其中包含 1024 个页表项,格式如下图。

可以发现,4MB 大小的页面下,页表项还是 4 字节 32 位,但只需要用高 10 位来保存物理页面的基地址就可以。因为每个物理页面都是 4MB,所以低 22 位始终为 0,为了兼容 4MB 页表项低 8 位和 4KB 页表项一样,只不过第 7 位变成了 PS 位,且必须为 1,而 PAT 位移到了 12 位。

长模式下的分页

如果开启了长模式,则必须同时开启分页模式,因为长模式弱化了分段模型,而分段模型也确实有很多不足,不适应现在操作系统和应用软件的发展。

同时,长模式也扩展了 CPU 的位宽,使得 CPU 能使用 64 位的超大内存地址空间。所以,长模式下的虚拟地址必须等于线性地址且为 64 位。长模式下的分页大小通常也有两种,4KB 大小的页和 2MB 大小的页。

长模式下的分页大小通常也有两种,4KB 大小的页和 2MB 大小的页。

长模式下的分页——4KB 页

该分页方式下,64 位虚拟地址被分为 6 个位段,分别是:保留位段,顶级页目录索引、页目录指针索引、页目录索引、页表索引、页内偏移,顶级页目录、页目录指针、页目录、页表各占有 4KB 大小,其中各有 512 个条目,每个条目 8 字节 64 位大小,如下图所示。

上面图中 CR3 已经变成 64 位的 CPU 的寄存器,它指向一个顶级页目录,里面的顶级页目项指向页目录指针,依次类推。需要注意的是,虚拟地址 48 到 63 这 16 位是根据第 47 位来决定的,47 位为 1,它们就为 1,反之为 0,这是因为 x86 CPU 并没有实现全 64 位的地址总线,而是只实现了 48 位,但是 CPU 的寄存器却是 64 位的。
当前分页模式下的 CR3、顶级页目录项、页目录指针项、页目录项、页表项的格式,可参考:

顶级页目录项指向页目录指针页,页目录指针项指向页目录页,页目录项指向页表页,页表项指向一个 4KB 大小的物理页,各级页目录项中和页表项中依然存在各种属性位,这在图中已经说明。其中的 XD 位,可以控制代码页面是否能够运行。

长模式下的分页——2MB 页

在这种分页方式下,64 位虚拟地址被分为 5 个位段 :保留位段、顶级页目录索引、页目录指针索引、页目录索引,页内偏移,顶级页目录、页目录指针、页目录各占有 4KB 大小,其中各有 512 个条目,每个条目 8 字节 64 位大小。

长模式下 2MB 和 4KB 分页的区别是,2MB 分页下是页目录项直接指向了 2MB 大小的物理页面,放弃了页表项,然后把虚拟地址的低 21 位作为页内偏移,21 位正好索引 2MB 大小的地址空间。

2MB 分页模式下的 CR3、顶级页目录项、页目录指针项、页目录项的格式,格式如下图。

开启 MMU

要使用分页模式就必先开启 MMU,但是开启 MMU 的前提是 CPU 进入保护模式或者长模式,开启 CPU 这两种模式的方法,来开启 MMU,步骤如下:

    1. 使 CPU 进入保护模式或者长模式。
    1. 准备好页表数据,这包含顶级页目录,中间层页目录,页表,假定我们已经编写了代码,在物理内存中生成了这些数据。
    1. 把顶级页目录的物理内存地址赋值给 CR3 寄存器。
mov eax, PAGE_TLB_BADR ;页表物理地址
mov cr3, eax
  • 4、设置 CPU 的 CR0 的 PE 位为 1,这样就开启了 MMU。

MMU 地址转换失败

MMU 的主要功能是根据页表数据把虚拟地址转换成物理地址,但有没有可能转换失败?绝对有可能,例如,页表项中的数据为空,用户程序访问了超级管理者的页面,向只读页面中写入数据。这些都会导致 MMU 地址转换失败。

MMU 地址转换失败了怎么办呢?失败了既不能放行,也不是 reset,MMU 执行的操作如下。

  • 1.MMU 停止转换地址。
  • 2.MMU 把转换失败的虚拟地址写入 CPU 的 CR2 寄存器。
  • 3.MMU 触发 CPU 的 14 号中断,使 CPU 停止执行当前指令。
  • 4.CPU 开始执行 14 号中断的处理代码,代码会检查原因,处理好页表数据返回。
  • 5.CPU 中断返回继续执行 MMU 地址转换失败时的指令。
posted @ 2022-05-22 22:10  牛犁heart  阅读(2292)  评论(0编辑  收藏  举报