RPC实战与核心原理之时钟轮
时钟轮在RPC中的应用
回顾
在分布式环境下,RPC 框架自身以及服务提供方的业务逻辑实现,都应该对异常进行合理地封装,让使用方可以根据异常快速地定位问题;而在依赖关系复杂且涉及多个部门合作的分布式系统中,我们也可以借助分布式链路跟踪系统,快速定位问题。
定时任务如何实现
-
每创建一个 Future 我们都启动一个线程,之后 sleep,到达超时时间就触发请求超时的处理逻辑。
-
可以用一个线程来处理所有的定时任务,
时钟轮
在时钟轮机制中,有时间槽和时钟轮的概念,时间槽就相当于时钟的刻度,而时钟轮就相当于秒针与分针等跳动的一个周期,我们会将每个任务放到对应的时间槽位上。
时钟轮的运行机制和生活中的时钟也是一样的,每隔固定的单位时间,就会从一个时间槽位跳到下一个时间槽位,这就相当于我们的秒针跳动了一次;时钟轮可以分为多层,下一层时钟轮中每个槽位的单位时间是当前时间轮整个周期的时间,这就相当于 1 分钟等于 60 秒钟;当时钟轮将一个周期的所有槽位都跳动完之后,就会从下一层时钟轮中取出一个槽位的任务,重新分布到当前的时钟轮中,当前时钟轮则从第 0 槽位从新开始跳动,这就相当于下一分钟的第 1 秒。
举例:
假设我们的时钟轮有 10 个槽位,而时钟轮一轮的周期是 1 秒,那么我们每个槽位的单位时间就是 100 毫秒,而下一层时间轮的周期就是 10 秒,每个槽位的单位时间也就是 1 秒,并且当前的时钟轮刚初始化完成,也就是第 0 跳,当前在第 0 个槽位。
时钟轮示意图
好,现在我们有 3 个任务,分别是任务 A(90 毫秒之后执行)、任务 B(610 毫秒之后执行)与任务 C(1 秒 610 毫秒之后执行),我们将这 3 个任务添加到时钟轮中,任务 A 被放到第 0 槽位,任务 B 被放到第 6 槽位,任务 C 被放到下一层时间轮的第 1 槽位,如下面这张图所示。
时钟轮任务分布示意图
当任务 A 刚被放到时钟轮,就被即刻执行了,因为它被放到了第 0 槽位,而当前时间轮正好跳到第 0 槽位(实际上还没开始跳动,状态为第 0 跳);600 毫秒之后,时间轮已经进行了 6 跳,当前槽位是第 6 槽位,第 6 槽位所有的任务都被取出执行;1 秒钟之后,当前时钟轮的第 9 跳已经跳完,从新开始了第 0 跳,这时下一层时钟轮从第 0 跳跳到了第 1 跳,将第 1 槽位的任务取出,分布到当前的时钟轮中,这时任务 C 从下一层时钟轮中取出并放到当前时钟轮的第 6 槽位;1 秒 600 毫秒之后,任务 C 被执行。
任务C槽位转换示意图
时钟轮在 RPC 中的应用
它就是用来执行定时任务的,可以说在 RPC 框架中只要涉及到定时相关的操作,我们就可以使用时钟轮。如调用端请求超时处理
在时间轮的使用中,有些问题需要你额外注意:
- 时间槽位的单位时间越短,时间轮触发任务的时间就越精确。例如时间槽位的单位时间是 10 毫秒,那么执行定时任务的时间误差就在 10 毫秒内,如果是 100 毫秒,那么误差就在 100 毫秒内。
- 时间轮的槽位越多,那么一个任务被重复扫描的概率就越小,因为只有在多层时钟轮中的任务才会被重复扫描。比如一个时间轮的槽位有 1000 个,一个槽位的单位时间是 10 毫秒,那么下一层时间轮的一个槽位的单位时间就是 10 秒,超过 10 秒的定时任务会被放到下一层时间轮中,也就是只有超过 10 秒的定时任务会被扫描遍历两次,但如果槽位是 10 个,那么超过 100 毫秒的任务,就会被扫描遍历两次。结合这些特点,我们就可以视具体的业务场景而定,对时钟轮的周期和时间槽数进行设置。