复杂度的来源—高性能

极客时间:《从 0 开始学架构》复杂度的来源:高性能

引言

只有那些并不是用来取代旧技术,而是开辟了一个全新领域的技术,才会给软件系统带来复杂度,因为软件系统在设计的时候就需要在这些技术之间进行判断选择或者组合。就像汽车的发明无法取代火车,飞机的出现也并不能完全取代火车,所以我们在出行的时候,需要考虑选择汽车、火车还是飞机,这个选择的过程就比较复杂了,要考虑价格、时间、速度、舒适度等各种因素。
软件系统中高性能带来的复杂度主要体现在两方面,一方面是单台计算机内部为了高性能带来的复杂度;另一方面是多台计算机集群为了高性能带来的复杂度。

单机复杂度

计算机内部复杂度最关键的地方就是操作系统。计算机性能的发展本质上是由硬件发展驱动的,尤其是 CPU 的性能发展。著名的“摩尔定律”表明了 CPU 的处理能力每隔 18 个月就翻一番;而将硬件性能充分发挥出来的关键就是操作系统,所以操作系统本身其实也是跟随硬件的发展而发展的,操作系统是软件系统的运行环境,操作系统的复杂度直接决定了软件系统的复杂度。
操作系统和性能最相关的就是进程线程

  • 为了解决手工操作带来的低效,批处理操作系统应运而生。批处理程序大大提升了处理性能,但有一个很明显的缺点:计算机一次只能执行一个任务,如果某个任务需要从 I/O 设备(例如磁带)读取大量的数据,在 I/O 操作的过程中,CPU 其实是空闲的,而这个空闲时间本来是可以进行其他计算的。
  • 为了进一步提升性能,人们发明了“进程”,用进程来对应一个任务,每个任务都有自己独立的内存空间,进程间互不相关,由操作系统来进行调度。为了达到多进程并行运行的目的,采取了分时的方式,即把 CPU 的时间分成很多片段,每个片段只能执行某个进程中的指令。
    多进程虽然要求每个任务都有独立的内存空间,进程间互不相关,但从用户的角度来看,两个任务之间能够在运行过程中就进行通信,会让任务设计变得更加灵活高效。否则如果两个任务运行过程中不能通信,只能是 A 任务将结果写到存储,B 任务再从存储读取进行处理,不仅效率低,而且任务设计更加复杂。为了解决这个问题,进程间通信的各种方式被设计出来了,包括管道、消息队列、信号量、共享存储等
    多进程让多任务能够并行处理任务,但本身还有缺点,单个进程内部只能串行处理,而实际上很多进程内部的子任务并不要求是严格按照时间顺序来执行的,也需要并行处理。
  • 为了解决这个问题,人们又发明了线程,线程是进程内部的子任务,但这些子任务都共享同一份进程数据。为了保证数据的正确性,又发明了互斥锁机制。有了多线程后,操作系统调度的最小单位就变成了线程,而进程变成了操作系统分配资源的最小单位。
    虽然多进程多线程让多任务并行处理性能提升了不少,但从本直上讲还是属于分时系统,并没有实现真正意义上的并行。解决这个问题就是让多个CPU同时执行计算任务,从而实现真正意义上的并行,目前解决方案有三种:
  • SMP(Symmetric Multi-Processor,对称多处理器结构)
  • NUMA(Non-Uniform Memory Access,非一致存储访问结构)
  • MPP(Massive Parallel Processing,海量并行处理结构)

其中 SMP 是我们最常见的,目前流行的多核处理器就是 SMP 方案
在做架构设计的时候,需要花费很大的精力来结合业务进行分析、判断、选择、组合,这个过程同样很复杂。举一个最简单的例子:Nginx 可以用多进程也可以用多线程,JBoss 采用的是多线程;Redis 采用的是单进程,Memcache 采用的是多线程,这些系统都实现了高性能,但内部实现差异却很大。

集群的复杂度

通过大量机器来提升性能,并不仅仅是增加机器这么简单,让多台机器配合起来达到高性能的目的,是一个复杂的任务,针对常见的几种方式。
任务分配
任务分配的意思是指每台机器都可以处理完整的业务任务,不同的任务分配到不同的机器上执行。比如这种

再比如这种

  1. 任务分解
    通过任务分配的方式,我们能够突破单台机器处理性能的瓶颈,通过增加更多的机器来满足业务的性能需求,但如果业务本身也越来越复杂,单纯只通过任务分配的方式来扩展性能,收益会越来越低。例如,业务简单的时候 1 台机器扩展到 10 台机器,性能能够提升 8 倍(需要扣除机器群带来的部分性能损耗,因此无法达到理论上的 10 倍那么高),但如果业务越来越复杂,1 台机器扩展到 10 台,性能可能只能提升 5 倍。造成这种现象的主要原因是业务越来越复杂,单台机器处理的性能会越来越低。为了能够继续提升性能,我们需要采取第二种方式:任务分解
    以微信的后台架构为例

    通过下面的架构示意图可以看出,微信后台架构从逻辑上将各个子业务进行了拆分,包括:接入、注册登录、消息、LBS、摇一摇、漂流瓶、其他业务(聊天、视频、朋友圈等)。
    通过这种任务分解的方式,能够把原来大一统但复杂的业务系统,拆分成小而简单但需要多个系统配合的业务系统。从业务的角度来看,任务分解既不会减少功能,也不会减少代码量(事实上代码量可能还会增加,因为从代码内部调用改为通过服务器之间的接口调用),那为何通过任务分解就能够提升性能呢?
    主要有几方面的因素:
  • 简单的系统更加容易做到高性能
    系统的功能越简单,影响性能的点就越少,就更加容易进行有针对性的优化。而系统很复杂的情况下,首先是比较难以找到关键性能点,因为需要考虑和验证的点太多;其次是即使花费很大力气找到了,修改起来也不容易,因为可能将 A 关键性能点提升了,但却无意中将 B 点的性能降低了,整个系统的性能不但没有提升,还有可能会下降。
  • 可以针对单个任务进行扩展
    当各个逻辑任务分解到独立的子系统后,整个系统的性能瓶颈更加容易发现,而且发现后只需要针对有瓶颈的子系统进行性能优化或者提升,不需要改动整个系统,风险会小很多。
    但若将大一统的系统分解成多个子系统提升性能,那划分越细越好?当然不是,这样做性能不仅不会提升,反而还会下降,最主要的原因是如果系统拆分得太细,为了完成某个业务,系统间的调用次数会呈指数级别上升,而系统间的调用通道目前都是通过网络传输的方式,性能远比系统内的函数调用要低得多。

因此,任务分解带来的性能收益是有一个度的,并不是任务分解越细越好,而对于架构设计来说,如何把握这个粒度就非常关

posted @ 2021-12-05 23:47  牛犁heart  阅读(108)  评论(0编辑  收藏  举报