P3047 [USACO12FEB]附近的牛Nearby Cows

                        P3047 [USACO12FEB]附近的牛Nearby Cows

题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

输入输出格式

输入格式:

 

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

 

输出格式:

 

  • Lines 1..N: Line i should contain the value of M(i).

 

输入输出样例

输入样例#1:
6 2 
5 1 
3 6 
2 4 
2 1 
3 2 
1 
2 
3 
4 
5 
6 
输出样例#1:
15 
21 
16 
10 
8 
11 

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

 

树形dp 我们设dp[i][j]  为从 i 点向外走j步 获得的最大值 

在dfs的时候我们统计 dp[i][j] 的值

最后我们在跳出dfs后 统计前缀和 

注意 我们统计的dp都是对于 i 的儿子节点 

所以统计 i 在j步范围内的和时 还需要向上统计 

即 ans+=dp[now][step]     ans+=dp[fa[now][step-1]    ans-=dp[now][step-2] 

不断循环直到找到 值

 

 1 #include <cstdio>
 2 #include <cctype>
 3 
 4 const int MAXN=100010;
 5 
 6 int r,c,n,k;
 7 
 8 int fa[MAXN],val[MAXN],dp[MAXN][30];
 9 
10 struct TreeEdge {
11     int to;
12     int next;
13     TreeEdge() {}
14     TreeEdge(int to,int next):to(to),next(next) {}
15 };
16 TreeEdge Edge[MAXN<<1];
17 
18 int head[MAXN],tot;
19 
20 inline void read(int&x) {
21     int f=1;register char c=getchar();
22     for(x=0;!isdigit(c);c=='-'&&(f=-1),c=getchar());
23     for(;isdigit(c);x=x*10+c-48,c=getchar());
24     x=x*f;
25 }
26 
27 inline void add(int x,int y) {
28     Edge[++tot]=TreeEdge(y,head[x]);
29     head[x]=tot;
30     Edge[++tot]=TreeEdge(x,head[y]);
31     head[y]=tot;
32 }
33 
34 inline void DFS(int now,int f) {
35     fa[now]=f;
36     dp[now][0]=val[now];
37     for(int i=head[now];i;i=Edge[i].next) {
38         int v=Edge[i].to;
39         if(v==f) continue;
40         DFS(v,now);
41         for(int j=1;j<=k;++j)
42           dp[now][j]+=dp[v][j-1];
43     }
44 }
45 
46 inline void GOTO_DP(int now) {
47     int K=k,ans=0;
48     ans=dp[now][k];
49     while(now!=1&&K) {
50         --K;
51         ans+=dp[fa[now]][K];
52         if(K) ans-=dp[now][K-1];
53         now=fa[now]; 
54     }
55     printf("%d\n",ans);
56 }
57 
58 int hh() {
59 //    freopen("young.in","r",stdin); 
60 //    freopen("young.out","w",stdout);
61     read(n);read(k);
62     for(int x,Y,i=1;i<n;++i) {
63         read(x),read(Y);
64         add(x,Y);
65     }
66     for(int i=1;i<=n;++i) read(val[i]);
67     DFS(1,-1);
68     for(int i=1;i<=n;++i) 
69       for(int j=1;j<=k;++j)
70         dp[i][j]+=dp[i][j-1];
71     for(int i=1;i<=n;++i) GOTO_DP(i);
72     return 0;
73 }
74 
75 int sb=hh();
76 int main(int argc,char**argv) {;}
代码

 

  

posted @ 2017-09-14 15:34  拿叉插猹哈  阅读(164)  评论(0编辑  收藏  举报