洛谷P3366 【模板】最小生成树(LCT)
【模板】最小生成树
解题思路
用LCT来维护最小生成树。
除了把各顶点作为节点外,每条边也都视为一个节点。对于要加入的边\(e\),检查其两顶点\(x\)和\(y\)是否在同一棵树中,如果不在,则让\(e\)连接\(x\)和\(y\)如果在一棵树中,则找到\(x\)到\(y\)的路径上最长的边,与\(e\)比较,如果\(e\)更小,则删掉那条边,再把\(e\)加入。只要维护一下最长的边的编号即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 300005;
int fa[N], ch[N][2], sta[N], maxx[N];
ll v[N];
bool rev[N];
inline bool get(int x)
{
return ch[fa[x]][1] == x;
}
inline bool is_root(int x)
{
return (!fa[x] || ch[fa[x]][1] != x && ch[fa[x]][0] != x);
}
inline void pushr(int x)
{
swap(ch[x][0], ch[x][1]);
rev[x] ^= 1;
}
inline void push_up(int x)
{
int t = v[maxx[ch[x][1]]] > v[maxx[ch[x][0]]]? maxx[ch[x][1]]: maxx[ch[x][0]];
maxx[x] = v[t] > v[x]? t: x;
}
inline void push_down(int x)
{
if(rev[x]){
pushr(ch[x][0]);
pushr(ch[x][1]);
rev[x] = 0;
}
}
inline void rotate(int x)
{
int y = fa[x], z = fa[y];
int u = get(x);
ch[y][u] = ch[x][u^1], fa[ch[x][u^1]] = y;
if(!is_root(y))
ch[z][get(y)] = x;
fa[x] = z;
ch[x][u^1] = y, fa[y] = x;
push_up(y), push_up(x);
}
inline void splay(int x)
{
int pos = 0;
sta[++pos] = x;
for(int i = x; !is_root(i); i = fa[i])
sta[++pos] = fa[i];
while(pos)
push_down(sta[pos--]);
while(!is_root(x)){
int y = fa[x];
if(!is_root(y))
get(x) == get(y)? rotate(y): rotate(x);
rotate(x);
}
}
inline void access(int x)
{
for(int y = 0; x; y = x, x = fa[x])
splay(x), ch[x][1] = y, push_up(x);
}
inline void make_root(int x)
{
access(x);splay(x);
pushr(x);
}
inline void split(int x, int y)
{
make_root(x);
access(y);splay(y);
}
inline int find_root(int x)
{
access(x);splay(x);
while(ch[x][0]){
push_down(x);
x = ch[x][0];
}
splay(x);
return x;
}
int a[N], b[N];
void link(int id)
{
make_root(a[id]);
make_root(b[id]);
fa[a[id]] = id;
fa[b[id]] = id;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
int line = 0;
ll sum = 0;
for(int i = n + 1; i <= n + m; i ++){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
a[i] = x, b[i] = y, v[i] = z;
maxx[i] = i;
make_root(x);
if(find_root(y) != x){
link(i);
++line;
sum += z;
}
else {
split(x, y);
int k = maxx[y];
if(v[k] > z){
splay(k);
fa[ch[k][0]] = fa[ch[k][1]] = 0;
ch[k][0] = ch[k][1] = 0;
link(i);
sum -= v[k] - z;
}
}
}
if(line == n - 1)
printf("%lld\n", sum);
else
printf("orz\n");
return 0;
}