2019ccpc网络赛hdu6703 array(线段树)

array

题目传送门

解题思路

操作1是把第pos个位置上的数加上\(10^7\),操作2是找到区间[1,r]中没有且大于k的最小的数。注意到k的范围是小于等于n的,且n的范围是\(10^5\),远小于\(10^7\),所以对于操作1,可以视为把第pos个位置上的数删去。

因为所有节点上的数都是唯一的,所以建立一颗权值线段树,存入每个权值对应的位置,维护其最大值和最小值。为了保证一定有答案,建立的权值范围是[1,n+1]。对于操作1,直接把pos对应的权值的叶子节点修改为0,代表这个数不存在即可。

对于操作2,我们在线段树上查询。对于一颗子树,有答案的前提是其最大值大于r,或者最小值等于0,即存在r后面的数,或者有不存在的数。对于左子树,还应有mid>=k。因为答案要尽量小,所以先看左子树是否可以找到答案,如果左子树没有答案,再看右子树,如果右子树也没有,则返回0,表示没有找到答案。但因为建立的权值范围是[1,n+1],所以最后一定会有答案,当进入叶子节点,则返回答案。

代码如下

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;

const int N = 100005;

struct T{
    int l, r;
    int minn, maxx;
}tree[N<<2];

void build(int k, int l, int r)
{
    tree[k].l = l;
    tree[k].r = r;
    tree[k].maxx = tree[k].minn = 0;
    if(l == r)
        return;
    int mid = (l + r) / 2;
    build(2*k, l, mid);
    build(2*k+1, mid + 1, r);
}

void update(int k, int x, int v)
{
    if(tree[k].l == tree[k].r){
        tree[k].maxx = tree[k].minn = v;
        return;
    }
    int mid = (tree[k].l + tree[k].r) / 2;
    if(x <= mid)
        update(2*k, x, v);
    else
        update(2*k+1, x, v);
    tree[k].minn = min(tree[2*k].minn, tree[2*k+1].minn);
    tree[k].maxx = max(tree[2*k].maxx, tree[2*k+1].maxx);
}

int query(int k, int r, int x)
{
    if(tree[k].l == tree[k].r)
        return tree[k].l;
    int mid = (tree[k].l + tree[k].r) / 2;
    if(x <= mid && (tree[2*k].minn == 0 || tree[2*k].maxx > r)){
        int ans = query(2*k, r, x);
        if(ans)
            return ans;
    }
    if(tree[2*k+1].minn == 0 || tree[2*k+1].maxx > r)
        return query(2*k+1, r, x);
    else
        return 0;
}

int a[N];

int main()
{
    int t;
    scanf("%d", &t);
    while(t --){
        int n, m;
        scanf("%d%d", &n, &m);
        build(1, 1, n + 1);
        for(int i = 1; i <= n; i ++){
            int x;
            scanf("%d", &x);
            a[i] = x;
            update(1, x, i);
        }
        int last = 0;
        for(int i = 1; i <= m; i ++){
            int opt;
            scanf("%d", &opt);
            if(opt == 1){
                int t1;
                scanf("%d", &t1);
                t1 ^= last;
                update(1, a[t1], 0);
            }
            else {
                int t1, t2;
                scanf("%d%d", &t1, &t2);
                t1 ^= last;
                t2 ^= last;
                last = query(1, t1, t2);
                printf("%d\n", last);
            }
        }
    }
    return 0;
}
posted @ 2019-08-24 10:40  whisperlzw  阅读(131)  评论(0编辑  收藏  举报