2019牛客多校第七场C-Governing sand(线段树+枚举)
Governing sand
解题思路
枚举每一种高度作为最大高度,则需要的最小花费的钱是:砍掉所有比这个高度高的树的所有花费+砍掉比这个高度低的树里最便宜的m棵树的花费,m为高度低的里面需要砍掉的个数。
所以,可以利用权值线段树,按照高度从小到大的枚举顺序将各个种类的树放入,维护每个节点的树的棵数以及花费,按照枚举的顺序求出各个高度作为最大高度的最小花费,其中最小的就是答案。需要注意一下的是,当你把一种高度作为最大高度,你要砍的树不应该包含它,所以先求花费,再插入。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100005;
struct T{
int l, r;
ll c;
ll sum;
}tree[N<<2];
struct R{
ll h, c, p;
bool operator<(const R& a)const{
return h < a.h;
}
}a[N];
void build(int k, int l, int r)
{
tree[k].l = l, tree[k].r = r;
tree[k].c = tree[k].sum = 0;
if(tree[k].l == tree[k].r)
return;
int mid = (tree[k].l + tree[k].r) / 2;
build(2*k, l, mid);
build(2*k+1, mid + 1, r);
}
void insert(int k, int x, ll c)
{
if(tree[k].l == tree[k].r){
tree[k].c += c;
tree[k].sum += tree[k].l * c;
return;
}
int mid = (tree[k].l + tree[k].r) / 2;
if(x <= mid)
insert(2*k, x, c);
else
insert(2*k+1, x, c);
tree[k].c = tree[2*k].c + tree[2*k+1].c;
tree[k].sum = tree[2*k].sum + tree[2*k+1].sum;
}
ll query(int k, ll x)
{
if(tree[k].l == tree[k].r)
return tree[k].l * x;
if(tree[2*k].c >= x)
return query(2*k, x);
else {
x -= tree[2*k].c;
return query(2*k+1, x) + tree[2*k].sum;
}
}
int main()
{
int n;
while(scanf("%d", &n) != EOF){
ll sum = 0, num = 0;
for(int i = 1; i <= n; i ++){
scanf("%lld%lld%lld", &a[i].h, &a[i].c, &a[i].p);
sum += a[i].c * a[i].p;
}
build(1, 1, 200);
ll ans = 2000000000000000000LL;
sort(a + 1, a + n + 1);
for(int i = 1; i <= n; i ++){
sum -= a[i].p * a[i].c;
num += a[i].p;
ll ct = a[i].p;
int j = i;
while(j != n && a[j].h == a[j + 1].h){
j ++;
sum -= a[j].p * a[j].c;
num += a[j].p;
ct += a[j].p;
}
ll cut = num - 2 * ct + 1;
ll cur = sum;
if(cut > 0)
cur += query(1, cut);
ans = min(ans, cur);
insert(1, a[i].c, a[i].p);
while(i != n && a[i].h == a[i + 1].h){
i ++;
insert(1, a[i].c, a[i].p);
}
}
printf("%lld\n", ans);
}
return 0;
}