logistic 回归

logistic回归

 

1.算法思想

根据给定的数据集确定分类的边界。这个分类的边界就是我们所要求的回归函数。

所谓的回归其实就是最佳拟合,回归函数就是确定最佳回归参数,然后对不同的特征赋予不同的权重

 

2.算法基础

(1)所采用的映射函数是sigmoid函数,sigmoid函数比0-1函数(正方形波)更好的原因是sigmoid函数在局部上看是平滑的,而在全局上看是接近跳跃的。而0-1函数它本身是跳跃的,不够平滑,误差比较大。

(2)根据回归函数计算出了一个结果,然后代入sigmoid函数,就可以得到一个位于01之间的函数值,然后根据这个函数值得大小就可以判断类别;如果是二类分类问题值大于0.5属于1类, 否则属于0

(3)最佳回归系数确定的方法是梯度上升法:

a.梯度上升法是用来求函数的最大值的,常说的梯度下降法是用来求函数的最小值的

b.所谓的梯度其实就是数学中的导数,也就是数据变化最大的方向。一般用倒三角符号来表示梯度。

c.公式为 w= w+ a.tidu(f(w)),其中a是步长,该公式会一直被迭代直到次数达到某一个值,或者达到某个误差允许的范围。

 

3.算法的优缺点

优点:计算比较简单,易于理解说明

缺点:有可能会欠拟合

适用的数据:标称数据和数值数据

 

4.算法的python实现
1)创造简单的数据

from numpy import *
from math import *
import matplotlib.pyplot as plt
# create the data
def createdata(filename):
    fr = open(filename, 'r')
    lines = fr.readlines()
    dataset = []
    labelset = []
    for each in lines:
        current_data = each.strip().split()
        dataset.append([1.0, float(current_data[0]), float(current_data[1])])
        labelset.append(int(current_data[2]))
    return dataset, labelset

 

(2)定义sigmoid函数

# define the sigmoid fuction
def sigmoid(x):
    return 1.0/(1+ exp(-x))

 

(3)定义梯度上升算法

# define the gradascent
def gradascent(dataset, lableset):
    datamatrix = mat(dataset)
    y = mat(lableset).transpose()
    m, n = shape(datamatrix)
    a = 0.001
    maxloop = 500
    w = ones((n, 1))
    for i in range(maxloop):
        l = datamatrix*w
        h = ones((m, 1))
        j =0
        for each in l:
            h[j] = sigmoid(each)
            j += 1
        error = y - h
        w += a * datamatrix.transpose()*error
    return w

 

(4)定义随机梯度下降算法,这是一个改进的算法,之所以它是一个改进的算法是因为他节省了计算资源


# improve the grad
def gradimprove(dataset, datalable, times = 150):
    datamatrix = array(dataset)
    m,n = shape(datamatrix)
    weights = ones(n)
    for i in range(times):
        dataindex = range(m)
        for j in range(m):
            a = 4/(i + j + 10)+0.01
            randindex = int(random.uniform(0, len(dataindex)))
            t = sum(datamatrix[randindex]*weights)
            h = sigmoid(t)
            error = datalable[randindex] - h
            weights += a*datamatrix[randindex]*error
            del(dataindex[randindex])
    return weights

 

(5)绘制logstic函数

# plot the regression function
def plotregression(weights):
    datamat, datalable = createdata("F:data/machinelearninginaction/Ch05/testSet.txt")
    datastr = array(datamat)
    n = shape(datastr)[0]
    x1 = []
    y1 = []
    x2 = []
    y2 = []
    for i in range(n):
        if datalable[i] == 1:
            x1.append(datastr[i, 1])
            y1.append(datastr[i, 2])
        else:
            x2.append(datastr[i, 1])
            y2.append(datastr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(x1, y1, s=30, c='red', marker='s')
    ax.scatter(x2, y2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.show()

 

(6)对测试向量进行分类

# classify the vector
def classify(testdata, weights):
    testsum = sum(testdata*weights)
    classnum = sigmoid(testsum)
    if classnum < 0.5:
        return 0
    else:
        return 1

 

(7)进行十折交叉验证,这里针对的是判定马是否得病的案例

# the multi test
def multitest(times):
    errorall = 0.0
    for i in range(times):
        error = horse()
        errorall += error
    errorrate = errorall/float(times)
    print "the %d errorrate is %f" % (times, errorrate)
    return errorrate

(8)

5.具体应用:判断一匹马是不是得病了


# create the horse function
def horse():
    fr1 = open("F:data/machinelearninginaction/Ch05/horseColicTraining.txt")
    fr2 = open("F:data/machinelearninginaction/Ch05/horseColicTest.txt")
    lines = fr1.readlines()
    dataset = []
    labelset = []
    for each in lines:
        current_data = each.strip().split('\t')
        vector = []
        for i in range(21):
            vector.append(float(current_data[i]))
        dataset.append(vector)
        labelset.append(float(current_data[21]))
    weights = gradimprove(dataset, labelset, 500)
    test_lines = fr2.readlines()
    testdata = []
    testlable = []
    for each in test_lines:
        current_data = each.strip().split('\t')
        vector = []
        for i in range(21):
            vector.append(float(current_data[i]))
        testdata.append(vector)
        testlable.append(float(current_data[21]))
    error = 0.0
    for i in range(len(testdata)):
        lable = classify(testdata[i], weights)
        if lable != testlable[i]:
            error += 1.0
    errorrate = error/float(len(testdata))
    print "the error rate is %f" % errorrate
    return errorrate

 

5.分析与总结

1.书上的算法采用的是梯度上升算法,但是其实它就是梯度下降算法的变式。因为w = w+(y - h)*X= w-(h-y)*X

2.书上算w为什么没有用到导数的原因见此博客http://blog.csdn.net/dongtingzhizi/article/details/15962797

3.logistic回归,其实就是找到一个能够最好的分割两个类别的边界函数。

posted @ 2017-03-30 19:57  whatyouknow123  阅读(265)  评论(0编辑  收藏  举报