python_数据分析与挖掘实战_灰色预测模型

复制代码
import sys
sys.path.append('../../code')  # 设置路径
import numpy as np
import pandas as pd
# from GM11 import GM11  # 引入自编的灰色预测函数
def GM11(x0): #自定义灰色预测函数
    x1 = x0.cumsum() #1-AGO序列
    z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列
    z1 = z1.reshape((len(z1),1))
    B = np.append(-z1, np.ones_like(z1), axis = 1)
    Yn = x0[1:].reshape((len(x0)-1, 1))
    [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
    f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
    delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
    C = delta.std()/x0.std()
    P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
    return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率
inputfile1 = 'C:\\Users\\15856\\Desktop\\new_reg_data.csv'  # 输入的数据文件
inputfile2 = '../../data/0228/data.csv'  # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2)  # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
#   f = GM11(new_reg_data.loc[range(1994, 2014),i].as_matrix())[0]
    f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
    new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
    new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
#     new_reg_data.loc[2016,i] = f(len(new_reg_data)+1)  
    new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
outputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11.xls'  # 灰色预测后保存的路径
y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
# y.extend([np.nan,np.nan,np.nan])
#  print(y)
new_reg_data['y'] = y###########################
new_reg_data.to_excel(outputfile)  # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示



# 代码6-6

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR

inputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11.xls'  # 灰色预测后保存的路径
data = pd.read_excel(inputfile)  # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
data.index = range(1994,2016)
data_train = data.loc[range(1994,2014)].copy()  # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std  # 数据标准化
x_train = data_train[feature].values  # 属性数据
y_train = data_train['y'].values  # 标签数据

linearsvr = LinearSVR()  # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
data.to_excel(outputfile)

print('真实值与预测值分别为:\n',data[['y','y_pred']])

fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
plt.title('3133',fontsize=20)
plt.show()
复制代码

 

posted @   whatisthat  阅读(173)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
点击右上角即可分享
微信分享提示