python_数据分析与挖掘实战_灰色预测模型
import sys sys.path.append('../../code') # 设置路径 import numpy as np import pandas as pd # from GM11 import GM11 # 引入自编的灰色预测函数 def GM11(x0): #自定义灰色预测函数 x1 = x0.cumsum() #1-AGO序列 z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列 z1 = z1.reshape((len(z1),1)) B = np.append(-z1, np.ones_like(z1), axis = 1) Yn = x0[1:].reshape((len(x0)-1, 1)) [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数 f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值 delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)])) C = delta.std()/x0.std() P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0) return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率 inputfile1 = 'C:\\Users\\15856\\Desktop\\new_reg_data.csv' # 输入的数据文件 inputfile2 = '../../data/0228/data.csv' # 输入的数据文件 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 data = pd.read_csv(inputfile2) # 读取总的数据 new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] for i in l: # f = GM11(new_reg_data.loc[range(1994, 2014),i].as_matrix())[0] f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果 new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果 # new_reg_data.loc[2016,i] = f(len(new_reg_data)+1) new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 outputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11.xls' # 灰色预测后保存的路径 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 y.extend([np.nan,np.nan]) # y.extend([np.nan,np.nan,np.nan]) # print(y) new_reg_data['y'] = y########################### new_reg_data.to_excel(outputfile) # 结果输出 print('预测结果为:\n',new_reg_data.loc[2014:2015,:]) # 预测结果展示 # 代码6-6 import matplotlib.pyplot as plt from sklearn.svm import LinearSVR inputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11.xls' # 灰色预测后保存的路径 data = pd.read_excel(inputfile) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 data.index = range(1994,2016) data_train = data.loc[range(1994,2014)].copy() # 取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean)/data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train,y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] outputfile = 'C:\\Users\\15856\\Desktop\\new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果 data.to_excel(outputfile) print('真实值与预测值分别为:\n',data[['y','y_pred']]) fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 plt.title('3133',fontsize=20) plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通