PAT甲级 链表题_C++题解
链表处理
PAT (Advanced Level) Practice 链表题
目录
- 《算法笔记》 重点摘要:静态链表
- 1032 Sharing (25)
- 1052 Linked List Sorting (25)
- 1097 Deduplication on a Linked List (25)
- 1133 Splitting A Linked List (25)
- 附: 动态链表
《算法笔记》 7.3 链表 重点摘要
静态链表 ⭐
(1) 定义
结构体类型名和结构体变量名尽量不同
struct Node{
int address; // 记录地址(若后面排序则不能以数组下标代替)
typename data;
int next;
XXX...
} node[100001];
(2) 初始化
- 遍历所有结点,将性质变量标记为比正常情况(如在所给链表上)下更小的数字
for (int i = 0; i < 100001; i++){
node[i].XXX = 0;
}
- 输入节点时直接将性质变量的初始值压入
int n, head, address, key, next;
scanf("%d%d", &n, &head);
for (int i = 0; i < n; i++){
scanf("%d%d%d", &address, &key, &next);
node[address] = {address, key, next, 0};
}
(3) 标记
依据题目所给链表首地址和各结点信息遍历链表上的结点,标记性质,记录个数
int p = head, count = 0;
while (p != -1){
XXX = 1;
count++;
p = node[p]->next;
}
int count = 0;
for (int p = head; p != -1; p = node[p].next){
node[p].XXX = 1;
count++;
}
(4) 排序
bool cmp (Node a, Node b){
if (a.XXX == -1 || b.XXX = -1){
// 比较标记性质,若有无效点此性质较小 -> 被放到数组后面
return a.XXX > b.XXX;
}
else{
// 按要求排序
}
}
1032 Sharing (25)
题目思路
- 链表结点中添加性质变量 inFirst 记录是否在第一个链表中
- 初始化时将 inFirst 均置为 false
- 结点输入完毕后,遍历第一条链表,令结点 inFirst = true
- 遍历第二条链表,检查结点 inFirst,若为 true,break跳出循环
- 检查第二条链表循环变量
- 若未到链表尾,说明找到了和第一条链表共享的结点,按 %05d 输出地址
- 若为 -1 说明到链表尾未找到,输出 -1
#include<iostream>
using namespace std;
struct Node{
char data;
int next;
bool inFirst;
} node[100001];
int main()
{
int head1, head2, n, address, next, p;
char data;
scanf("%d%d%d", &head1, &head2, &n);
for (int i = 0; i < n; i++){
scanf("%d %c %d", &address, &data, &next);
node[address] = {data, next, false};
}
for (p = head1; p != -1; p = node[p].next)
node[p].inFirst = true;
for (p = head2; p != -1; p = node[p].next)
if (node[p].inFirst == true) break;
if (p == -1) printf("-1");
else printf("%05d", p);
return 0;
}
1052 Linked List Sorting (25)
题目思路
- 结点中添加性质变量 inList,用 int 型的 0/1 来表示,便于排序中比较
- 结点中要保留此结点的地址,因为按 key 排序后数组下标将不再能表示地址
- 输入完成后,从头结点遍历链表,令 inList = 1 并 记录链表中的结点数
- 排序函数将不在链表中的放到后面,在链表中的按 key 值排序,故排序后数组的前 count 个即为新链表
- 输出时注意数组前一个结点的新 next 应当为数组下一个结点的地址,而非原链表的 next
#include<iostream>
#include<algorithm>
using namespace std;
struct Node{
int address, key, next, inList;
} node[100001];
bool cmp (Node a, Node b){ return !a.inList || !b.inList ? a.inList > b.inList : a.key < b.key; }
int main()
{
int n, head, address, key, next, count = 0;
scanf("%d%d", &n, &head);
for (int i = 0; i < n; i++){
scanf("%d%d%d", &address, &key, &next);
node[address] = {address, key, next, 0};
}
for (int i = head; i != -1; i = node[i].next){
node[i].inList = 1;
count++;
}
if (!count) printf("0 -1\n");
else{
sort(node, node+100001, cmp);
printf("%d %05d\n", count, node[0].address);
for (int i = 0; i < count - 1; i++) printf("%05d %d %05d\n", node[i].address, node[i].key, node[i+1].address);
printf("%05d %d %d\n", node[count-1].address, node[count-1].key, -1);
}
return 0;
}
1097 Deduplication on a Linked List (25)
题目思路
- 读入静态链表结点数据,用一个 set 记录出现过的数字的绝对值
- 扫描题目给出的链表结点
- 若其数据域绝对值已经出现过,则放到 removed 容器中
- 若未出现过,将数据域绝对值加入到集合中,结点放到 result 容器中
- 先输出 result 容器,再输出 removed 容器
- 注意!!! 容器的大小size()返回值为一个无符号数,无符号数运算后再比较十分危险
for (int i = 0; i < vector.size() - 1; i++
改为for (int i = 1; i < vector.size(); i++
避开 size()-1
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
using namespace std;
struct Node{
int address, data, next;
} node[100001];
int main()
{
int head, n, address, data, next;
scanf("%d%d", &head, &n);
for (int i = 0; i < n; i++){
scanf("%d%d%d", &address, &data, &next);
node[address] = {address, data, next};
}
vector<Node> result, removed;
set<int> occured;
for (int p = head; p != -1; p = node[p].next){
if (occured.find(abs(node[p].data)) != occured.end()) removed.push_back(node[p]);
else{
occured.insert(abs(node[p].data));
result.push_back(node[p]);
}
}
for (int i = 1; i < result.size(); i++)
printf("%05d %d %05d\n", result[i-1].address, result[i-1].data, result[i].address);
if (result.size() > 0) printf("%05d %d -1\n", result[result.size()-1].address, result[result.size()-1].data);
for (int i = 1; i < removed.size(); i++)
printf("%05d %d %05d\n", removed[i-1].address, removed[i-1].data, removed[i].address);
if (removed.size() > 0) printf("%05d %d -1\n", removed[removed.size()-1].address, removed[removed.size()-1].data);
return 0;
}
1133 Splitting A Linked List (25)
题目思路
- 设置全局变量 K,在程序中接收输入,以便于 cmp 函数使用
- 在结点中设置 oriorder 变量,记录其在原始链表中的顺序,以便于 cmp 函数使用
- cmp 函数首先将不在链表中的放到数组后面,再看如果两个结点数值分别在 0 或 K 两侧,则按数值域排序,否则仍按原链表顺序
#include<iostream>
#include<algorithm>
using namespace std;
int K = 0;
struct Node{
int address, data, next, inList, oriorder;
} node[100001];
bool cmp (Node a, Node b){
if (!a.inList || !b.inList) return a.inList > b.inList;
if ((a.data >= 0 && b.data < 0) || (a.data < 0 && b.data >= 0)) return a.data < b.data;
if ((a.data > K && b.data <= K) || (a.data <= K && b.data > K)) return a.data < b.data;
return a.oriorder < b.oriorder;
}
int main()
{
int n, head, address, data, next, count = 0, order = 0;
scanf("%d%d%d", &head, &n, &K);
for (int i = 0; i < n; i++){
scanf("%d%d%d", &address, &data, &next);
node[address] = {address, data, next, 0, 0};
}
for (int p = head; p != -1; p = node[p].next){
node[p].inList = 1;
node[p].oriorder = order;
count++;
order++;
}
sort(node, node+100001, cmp);
for (int i = 0; i < count - 1; i++)
printf("%05d %d %05d\n", node[i].address, node[i].data, node[i+1].address);
printf("%05d %d %d\n", node[count-1].address, node[count-1].data, -1);
return 0;
}
二刷(参考柳婼小姐姐的代码)
- 遍历链表,先后选取 (-无穷,0), [0,k], (k,+无穷)压入 result 容器
- 输出 result 中的结点即为所要求的顺序
#include<iostream>
#include<vector>
using namespace std;
struct Node{
int address, data, next;
} node[100000];
int main()
{
int head, n, k, address, data, next;
scanf("%d%d%d", &head, &n, &k);
for (int i = 0; i < n; i++){
scanf("%d%d%d", &address, &data, &next);
node[address] = {address, data, next};
}
vector<Node> result;
for (int p = head; p != -1; p = node[p].next)
if (node[p].data < 0) result.push_back(node[p]);
for (int p = head; p != -1; p = node[p].next)
if (node[p].data >= 0 && node[p].data <= k) result.push_back(node[p]);
for (int p = head; p != -1; p = node[p].next)
if (node[p].data > k) result.push_back(node[p]);
for (int i = 1; i < result.size(); i++)
printf("%05d %d %05d\n", result[i-1].address, result[i-1].data, result[i].address);
printf("%05d %d -1\n", result[result.size()-1].address, result[result.size()-1].data);
return 0;
}
附:
动态链表
- 头结点:数据域不存放任何内容,指针域指向第一个数据域有内容的结点
- 最后一个节点的指针域指向 NULL,表示链表结尾
(1) 创建链表
node *p, *pre, *head;
head = new node();
head->next = NULL;
pre = head;
for (int i = 0; i < n; i++){
p = new node;
p->data = data[i];
p->next = NULL;
pre->next = p;
pre = p;
}
(2) 查找元素
// 查找链表中 x 并记录个数
node *p = head->next;
while (p != NULL){
if (p->data == x){
count++;
}
p = p->next;
}
(3) 插入元素
// 将 x 插入链表第 pos 个位置
node *p = head;
for (int i = 0; i < pos-1; i++){
p = p->next;
}
node *q = new node;
q->data = x;
q->next = p->next;
p->next = q;
(4) 删除元素
// 删除链表中数据域为 x 的结点
node *p = head->next;
node *pre = head;
while (p != NULL){
if (p->data = x){
pre->next = p->next;
delete(p);
p = pre->next;
}
else{
pre = p;
p = p->next;
}
}