wh008

导航

15 手写数字识别-小数据集

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()

 

digits = load_digits()
X_data = digits.data.astype(np.float32)
Y_data = digits.target.astype(np.float32).reshape(-1, 1)

 

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical
  • 训练集测试集划分
  • 张量结构
# 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
# x:归一化MinMaxScaler()
scaler = MinMaxScaler()
X_data = scaler.fit_transform(X_data)
X = X_data.reshape(-1, 8, 8, 1)
print("MinMaxScaler_trans_X_data:")
print(X_data)
# y:独热编码OneHotEncoder 张量结构todense
# 进行oe-hot编码
Y = OneHotEncoder().fit_transform(Y_data).todense()
print("one-hot_Y:")
print(Y)
# 训练集测试集划分
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

结果:

 

 

 

 

 

 

 

 

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。

 

# 设计卷积神经网络结构
# 建立模型
model = Sequential()
ks = [3, 3]  # 卷积核大小
# 一层卷积,输入数据的shape要指定,其它层的数据shape框架会自动推导
model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=X_train.shape[1:], activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 二层卷积
model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 三层卷积
model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
# 四层卷积
model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 平坦层
model.add(Flatten())
# 全连接层
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
# 激活函数
model.add(Dense(10, activation='softmax'))
model.summary()

 

 结果:

4.模型训练

# 设计卷积神经网络结构
# 建立模型
model = Sequential()
ks = [3, 3]  # 卷积核大小
# 一层卷积,输入数据的shape要指定,其它层的数据shape框架会自动推导
model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=X_train.shape[1:], activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 二层卷积
model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 三层卷积
model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
# 四层卷积
model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 平坦层
model.add(Flatten())
# 全连接层
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
# 激活函数
model.add(Dense(10, activation='softmax'))
model.summary()

结果:

 

 

 

 

 

 

 

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap
# 模型评价
# 模型评估
score = model.evaluate(x_test, y_test)[1]
print('模型准确率=',score)
# 预测值
y_pre = model.predict_classes(x_test)
y_pre[:10]

# 交叉表和交叉矩阵
y_test1 = np.argmax(y_test, axis=1).reshape(-1)
y_true = np.array(y_test1)[0]
y_true.shape
# 交叉表查看预测数据与原数据对比
pd.crosstab(y_true, y_pre, rownames=['true'], colnames=['predict'])

# 交叉矩阵
y_test1 = y_test1.tolist()[0]
a = pd.crosstab(np.array(y_test1), y_pre, rownames=['Lables'], colnames=['predict'])
df = pd.DataFrame(a)
print(df)
sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')

 

结果:

 

 

 

posted on 2020-06-10 16:19  wh008  阅读(209)  评论(0编辑  收藏  举报