半正定矩阵小计

抄录自百度百科

定义:设A是n阶方阵,如果对任何非零向量X,都有X'AX>=0,就称A为半正定矩阵

性质:

1. 半正定矩阵的行列式是非负的。

2. 半正定矩阵+半正定矩阵还是半正定矩阵

3. 非负实数乘半正定矩阵还是半正定矩阵

判定,设A是n阶是对称矩阵,下列条件等价:

1.A是半正定

2.A的所有主子式均非负

3.A的特征值均非负

4.存在n阶实矩阵C,使A=C'C

5.存在秩为r的r×n实矩阵B,使A=B'B

 

抄录自百度知道

如何说明半正定矩阵特征值非负?  

采用反证法:

假设AA'有负数特征值a<0,则存在特征向量x使得AA'x=ax
两边同时乘以x',得:x'AA'x=x'ax=ax'x
x'x是一个向量x自身的模长的平方,而且x是特征向量所以非零,所以x'x>0,所以ax'x<0
另一方面x'AA'x=(A'x)'(A'x)>=0
出现了矛盾,等式不成立,所以AA'的特征值必须非负。

posted @ 2018-01-07 19:28  我是文小浩  阅读(1197)  评论(0编辑  收藏  举报