POJ - 2115 - C Looooops (扩展欧几里得)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 19826 | Accepted: 5299 |
Description
for (variable = A; variable != B; variable += C) statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
Sample Output
0 2 32766 FOREVER
Source
还是扩展欧几里得,这里注意要简化一下原来的式子
AC代码:
#include <map> #include <set> #include <cmath> #include <deque> #include <queue> #include <stack> #include <cstdio> #include <cctype> #include <string> #include <vector> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define LL long long #define INF 0x7fffffff using namespace std; LL gcd(LL a, LL b) { return b == 0 ?a : gcd(b, a % b); } void exgcd(LL a, LL b, LL& x, LL& y) { if(b == 0) { x = 1; y = 0; } else { exgcd(b, a % b, y, x); y -= x * (a / b); } } int main() { LL A, B, C, k; while(scanf("%I64d %I64d %I64d %I64d", &A, &B, &C, &k) != EOF) { if(A == 0 && B == 0 && C == 0 && k == 0) break; if(A == B) { printf("0\n"); continue; } LL a = C; LL b = (1LL << k); LL c = gcd(a, b); LL d = B - A; if(d % c != 0) { printf("FOREVER\n"); continue; } a /= c;//这里要进行简化。由于可能产生多余的次数 b /= c; d /= c; LL p, q; exgcd(a, b, p, q);//这里求的是最简ax+by=gcd(a,b)的一组x,y的解 printf("%I64d\n", (p * (d / gcd(a, b)) % b + b) % b); } return 0; }