数据结构实验3(图的DFS和BFS实现)

实现邻接矩阵和邻接表两种不同存储结构上实现图的基本运算, 在MGraph类中扩充添加DFS()和BFS()函数.

包括的运算: 插入一条边, 删除一条边, 查询边是否存在, 图的深度优先搜索和广度优先搜索.

广度优先搜索利用队列作为辅助的数据结构, 元素类型是树的结点. 

实现代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
enum ResultCode { Underflow, Duplicate, Failure, Success, NotPresent };

template <class T>
class SeqQueue
{
public:
	SeqQueue(int mSize);
	~SeqQueue() { delete []q; }
	bool IsEmpty() const { return front == rear; } // front与rear相等时循环队列为空
	bool IsFull() const { return (rear + 1) % maxSize == front; } // front与(rear + 1) % maxSize相等时循环队列满
	bool Front(T &x) const;
	bool EnQueue(T x);
	bool DeQueue();
	void Clear() { front = rear = 0; }
	/* data */
private:
	int front, rear, maxSize; // 队头元素 队尾元素 数组最大长度
	T *q;
};
template <class T>
SeqQueue<T>::SeqQueue(int mSize)
{
	maxSize = mSize;
	q = new T[maxSize];
	front = rear = 0;
}
template <class T>
bool SeqQueue<T>::Front(T &x) const
{
	if(IsEmpty()) { // 空队列处理
		cout << "SeqQueue is empty" << endl;
		return false;
	}
	x = q[(front + 1) % maxSize];
	return true;
}
template <class T>
bool SeqQueue<T>::EnQueue(T x)
{
	if(IsFull()) { // 溢出处理
		cout << "SeqQueue is full" << endl;
		return false;
	}
	q[(rear = (rear + 1) % maxSize)] = x;
	return true;
}
template <class T>
bool SeqQueue<T>::DeQueue()
{
	if(IsEmpty()) { // 空队列处理
		cout << "SeqQueue is empty" << endl;
		return false;
	}
	front = (front + 1) % maxSize;
	return true;
}
template <class T>
class Graph
{
public:
	virtual	~Graph() {};
	virtual ResultCode Insert(int u, int v, T &w) = 0;
	virtual ResultCode Remove(int u, int v) = 0;
	virtual bool Exist(int u, int v) const = 0;
	/* data */
};
template <class T>
class MGraph: public Graph<T>
{
public:
	MGraph(int mSize, const T& noedg);
	~MGraph();
	ResultCode Insert(int u, int v, T &w);
	ResultCode Remove(int u, int v);
	bool Exist(int u, int v) const;
	int Vertices() const { return n; }
	void Output();
	void DFS();
	void BFS();
protected:
	T **a;
	T noEdge;
	int n, e;
	void DFS(int v, bool *vis);
	void BFS(int v, bool *vis);
	/* data */
};
template <class T>
void MGraph<T>::Output()
{
	for(int i = 0; i < n; ++i) {
		for(int j = 0; j < n; ++j)
			if(a[i][j] == noEdge) cout << "NE\t";
			else cout << a[i][j] << "\t";
		cout << endl;
	}
	cout << endl << endl << endl;
}
template <class T>
MGraph<T>::MGraph(int mSize, const T &noedg)
{
	n = mSize, e = 0, noEdge = noedg;
	a = new T *[n];
	for(int i = 0; i < n; ++i) {
		a[i] = new T[n];
		for(int j = 0; j < n; ++j)
			a[i][j] = noEdge;
		a[i][i] = 0;
	}
}
template <class T>
MGraph<T>::~MGraph()
{
	for(int i = 0; i < n; ++i)
		delete []a[i];
	delete []a;
}
template <class T>
bool MGraph<T>::Exist(int u, int v) const
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v || a[u][v] == noEdge) return false;
	return true;
}
template <class T>
ResultCode MGraph<T>::Insert(int u, int v, T &w)
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
	if(a[u][v] != noEdge) return Duplicate;
	a[u][v] = w;
	e++;
	return Success; 
}
template <class T>
ResultCode MGraph<T>::Remove(int u, int v)
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
	if(a[u][v] == noEdge) return NotPresent;
	a[u][v] = noEdge;
	e--;
	return Success;
}
template <class T>
void MGraph<T>::DFS()
{
	bool *vis = new bool[n];
	memset(vis, false, n);
	for(int i = 0; i < n; ++i)
		if(!vis[i]) DFS(i, vis);
	delete []vis;
}
template <class T>
void MGraph<T>::DFS(int v, bool *vis)
{
	vis[v] = true;
	cout << ' ' << v;
	for(int i = 0; i < n; ++i)
		if(a[v][i] != noEdge && a[v][i] != 0 && !vis[i]) DFS(i, vis);
}
template <class T>
void MGraph<T>::BFS()
{
	bool *vis = new bool[n];
	memset(vis, false, n);
	for(int i = 0; i < n; ++i)
		if(!vis[i]) BFS(i, vis);
	delete []vis;
}
template <class T>
void MGraph<T>::BFS(int v, bool *vis)
{
	SeqQueue<int> q(n);
	vis[v] = true;
	cout << ' ' << v;
	q.EnQueue(v);
	while(!q.IsEmpty()) {
		q.Front(v);
		q.DeQueue();
		for(int i = 0; i < n; ++i)
			if(a[v][i] != noEdge && a[v][i] != 0 && !vis[i]) {
				vis[i] = true;
				cout << ' ' << i;
				q.EnQueue(i);
			}
	}
}
template <class T>
struct ENode
{
	ENode() { nxtArc = NULL; }
	ENode(int vertex, T weight, ENode *nxt) {
		adjVex = vertex;
		w = weight;
		nxtArc = nxt;
	}
	int adjVex;
	T w;
	ENode *nxtArc;
	/* data */
};
template <class T>
class LGraph: public Graph<T>
{
public:
	LGraph(int mSize);
	~LGraph();
	ResultCode Insert(int u, int v, T &w);
	ResultCode Remove(int u, int v);
	bool Exist(int u, int v) const;
	int Vertices() const { return n; }
	void Output();
protected:
	ENode<T> **a;
	int n, e;
	/* data */
};
template <class T>
void LGraph<T>::Output()
{
	ENode<T> *q;
	for(int i = 0; i < n; ++i) {
		q = a[i];
		while(q) {
			cout << '(' << i << ' ' << q -> adjVex << ' ' << q -> w << ')';
			q = q -> nxtArc;
		}
		cout << endl;
	}
	cout << endl << endl;
}
template <class T>
LGraph<T>::LGraph(int mSize)
{
	n = mSize;
	e = 0;
	a = new ENode<T>*[n];
	for(int i = 0; i < n; ++i)
		a[i] = NULL;
}
template <class T>
LGraph<T>::~LGraph()
{
	ENode<T> *p, *q;
	for(int i = 0; i < n; ++i) {
		p = a[i];
		q = p;
		while(p) {
			p = p -> nxtArc;
			delete q;
			q = p;
		}
	}
	delete []a;
}
template <class T>
bool LGraph<T>::Exist(int u, int v) const
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return false;
	ENode<T> *p = a[u];
	while(p && p -> adjVex != v) p = p -> nxtArc;
	if(!p) return false;
	return true;
}
template <class T>
ResultCode LGraph<T>::Insert(int u, int v, T &w)
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
	if(Exist(u, v)) return Duplicate;
	ENode<T> *p = new ENode<T>(v, w, a[u]);
	a[u] = p;
	e++;
	return Success;
}
template <class T>
ResultCode LGraph<T>::Remove(int u, int v)
{
	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
	ENode<T> *p = a[u], *q = NULL;
	while(p && p -> adjVex != v) {
		q = p;
		p = p -> nxtArc;
	}
	if(!p) return NotPresent;
	if(q) q -> nxtArc = p -> nxtArc;
	else a[u] = p -> nxtArc;
	delete p;
	e--;
	return Success;
}
int main(int argc, char const *argv[])
{
	int n, g;
	cout << "请输入元素的个数: ";
	cin >> n;
	MGraph<int> A(n, INF);
	LGraph<int> B(n);
	cout << "请输入边的条数: ";
	cin >> g;
	int *a = new int[g];
	int *b = new int[g];
	int *w = new int[g];
	for(int i = 0; i < g; ++i)
	{
		cout << "请输入边及权值: ";
		cin>> a[i] >> b[i] >> w[i];
		A.Insert(a[i], b[i], w[i]);
		B.Insert(a[i], b[i], w[i]);
	}
	cout << "该图的深度优先遍历为:" << endl;
	A.DFS();
	cout << endl;
	cout << "该图的广度优先遍历为:" << endl;
	A.BFS();
	cout << endl;
	cout << "请输入要搜索的边: ";
	int c, d;
	cin >> c >> d;
	if(A.Exist(c, d)) cout << "邻接矩阵中该边存在!" << endl;
	else cout << "邻接矩阵中该边不存在!" << endl;
	if(B.Exist(c, d)) cout << "邻接表中该边存在!" << endl;
	else cout << "邻接表中该边不存在!" << endl;
	cout << "请输入要删除的边: ";
	int e, f;
	cin>> e >> f;
	if(A.Remove(e, f) == Success) cout << "邻接矩阵中删除该边成功!" << endl;
	else if(A.Remove(e, f) == NotPresent) cout<<"邻接矩阵中该边不存在!"<<endl;
	else cout<<"输入错误!"<<endl;
	if(B.Remove(e, f) == Success) cout << "邻接表中删除该边成功!" << endl;
	else if(B.Remove(e, f) == NotPresent) cout << "邻接表中该边不存在!" << endl;
	else cout << "邻接表中输入错误!" << endl;
	cout << "删除该边后该图的深度优先遍历为:" << endl;
	A.DFS();
	cout << endl;
	cout << "删除该边后该图的广度优先遍历为:" << endl;
	A.BFS();
	cout << endl;
	return 0;
}


posted on 2017-06-02 14:47  wgwyanfs  阅读(333)  评论(0编辑  收藏  举报

导航