摘要: 总结 xgboost(极限梯度提升算法):在分类和回归上都拥有超高性能的先进评估器 梯度提升树原理:通过不停的迭代,得到很多的弱评估器,当迭代结束后得到 k 个弱评估模型就是一棵树,每棵树都会有叶子节点,给每个叶子节点赋一个权重值,权重值累加得结果就是我们最终得梯度提升树返回得预测结果 xgboos 阅读全文
posted @ 2020-08-03 18:21 电竞杰森斯坦森 阅读(2036) 评论(0) 推荐(0) 编辑
摘要: 总结 随机森林 (以决策树为基学习器): 随机的体现 数据集的随机选择:从原始数据集中采取有放回的抽样bagging,构造子数据集。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复 待选特征的随机选取:随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取 阅读全文
posted @ 2020-08-03 17:07 电竞杰森斯坦森 阅读(1065) 评论(0) 推荐(0) 编辑
摘要: 总结 集成学习:通过在数据上构建多个模型,考虑多个弱评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现 实现集成学习的方法 Bagging装袋法(有放回的抽样方法):并行集成方法 原理:每轮从原始样本集中使用有放回的方法抽取n个训练样本,共进行k轮抽取,得到k个训 阅读全文
posted @ 2020-08-03 15:49 电竞杰森斯坦森 阅读(167) 评论(0) 推荐(0) 编辑