医学图像重建 (Medical Image Reconstruction) 学习笔记: (三) 扇形束图像重建
主要参考资料为 《医学图像重建入门》(曾更生,2009)
1. 简介
主要介绍扇形束成像的重建算法,包括 *** 等。
在平行光束成像中,我们基于中心切片定理推导出了一些图像重建算法。然而,在扇形束成像中,并没有相应的中心切片定理。通常采用的方法为:把扇形束成像问题转化成平行光束成像问题,然后把平行光束图像重建的算法修正一下,用于解决扇形束的成像问题。
2. 扇形束成像的几何描述及其点扩散函数
在 X 光 CT 领域,其光源多为扇形束的点光源。与平行光束的对比如下:
与之前章节相同,我们默认假设探测器是均匀地绕物体转动,且数据采样的角度区间也是均匀的。在这个假设条件下,平行光束的投影/反投影的点扩散函数(PSF)是移动不变的。
在用平行光束成像的情形,为了求反投影在点 \((x, y)\) 的数值,过该点向每个探测方向 \(\theta\) 上的探测器做垂线。把垂线与探测器的交点记为 \(s^*\) 。然后,把投影数值 \(p(s^*, \theta)\) 加到 \((x, y)\) 的位置上。
相似地,在用扇形束成像的情形,为了求反投影在点 \((x, y)\) 的数值,过该点和每个扇形的焦点画一条直线。把该直线与探测器的中线夹角记为 \(\gamma^*\) 。然后把扇形束的投影数值 \(g(\gamma^*, \beta)\) 加到 \((x, y)\) 的位置上。
可以证明,如果扇形束焦点的轨迹是一个完整的圆圈,所得到的投影/反投影的点扩散函数(PSF)是移动不变的。而且,这个投影/反投影的点扩散函数与平行光束成像情形的投影/反投影的点扩散函数是一样的。
(其实这里还是没有特别理解这个“点扩散函数”是什么意思。)
设原本的图像为 \(f(x, y)\) ,经过投影/反投影运算之后得到的图像为 \(b(x, y)\) 。可以证明,投影/反投影的点扩散函数是 \(1/r\) ,其中 \(r = \sqrt{x^2 + y^2}\) 。这样,\(f(x, y)\) 和 \(b(x, y)\) 的关系就建立起来了:
其中,“**” 表示二维卷积。在傅里叶变换领域,原本图像的傅里叶变换 \(\boldsymbol{F}\) 与投影/反投影运算后的图像的傅里叶变换 \(\boldsymbol{B}\) 的关系是
这是因为 \(1/\sqrt{x^2 + y^2}\) 的二维傅里叶变换是 \(1/\sqrt{\omega^2_x + \omega^2_y}\) 。
我们已经知道,对反投影后的图像 \(b(x, y)\) 进行二维斜坡滤波,即可以重建出原本图像 \(f(x, y)\) 。对于扇形束反投影后的图像 \(b(x, y)\) 完全可以采用同样的方法重建出原本图像 \(f(x, y)\) 。也就是说,线投影后滤波算法对于平行光束成像和扇形束成像是一样的。原本图像 \(f(x,y)\) 的傅里叶变换 \(F(\omega_x, \omega_y)\) 为:
最后,对 \(F(\omega_x, \omega_y)\) 求二维傅里叶反变换便得到原本图像 \(f(x, y)\) 。
(其实,还是没有特别理解上述过程。)(先做反投影、后做滤波,这很容易理解。但是,滤波函数为什么是这样的形式呢,为什么和平行光束相同呢?)
3. 平行光束算法到扇形束算法的转换
下面对之前介绍的平行光束算法重新推导,将其转化应用到扇形束成像中。