几种常见算法的介绍及复杂度分析(转)

一、几种常见算法的介绍及复杂度分析

1.基本概念

1.1稳定排序(stable sort)和非稳定排序

稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,

则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

1.2内排序( internal sorting )和外排序( external sorting)

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

1.3算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。



2.几种常见算法

2.1冒泡排序 (Bubble Sort)

冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。算法时间复杂度是O(n ^2)。

2.2选择排序 (Selection Sort)

选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

选择排序是不稳定的。算法复杂度是O(n ^2 )。

2.3插入排序 (Insertion Sort)

插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

直接插入排序是稳定的。算法时间复杂度是O(n ^2)

2.4堆排序

堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

堆排序是不稳定的。算法时间复杂度O(nlog n)。

2.5归并排序

设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。

其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。

2.6快速排序

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。
本文链接网址http://www.sfcode.cn/soft/019693353.htm
posted @ 2007-10-24 15:49  ok_008  阅读(2916)  评论(0编辑  收藏  举报
给我写信