利用python画出SJF调度图

img
最先发布在csdn。本人原创。
https://blog.csdn.net/weixin_43906799/article/details/105510046

SJF算法:

最短作业优先(SJF)调度算法将每个进程与其下次 CPU 执行的长度关联起来。实际上,短进程/作业(要求服务时间最短)在实际情况中占有很大比例,为了使得它们优先执行,追求最少的平均等待时间时间、平均周转时间、平均带权周转时间。短作业优先可能导致长作业一直得不到处理)

总体构想

用python绘图这个想法产生于写调度图作业那段时间。当时就想着用python绘图,有两个想法trutle动态绘制调度图,还有就是现在所使用的方法。为什么用类写这次的作业,一是下次的作业可以直接继承SJF类,然后修改调度函数和排序函数就行了。二是用类写代码解决一类问题,代码看起来比较漂亮。

算法设计结构图

img点击并拖拽以移动

程序执行结果图

img点击并拖拽以移动

作业信息

作业名 到达时间 运行时间
A 0 5
B 1 4
C 2 1
D 4 2
E 5 1

基本思路

(1)类初始化:

对于进程调度SJF算法这个类,首先我们需要有成员变量,也就是大致所需要的成员变量。 基本也就需要这么多。

self.data = [] 存储进程
self.name = '' 进程名字
self.service_time = 0 服务时间
self.arrival_time = 0 到达时间
self.state = '' 初始状态
self.number = 0 进程数量
self.timeout = 0 超时限定
self.start = 0 开始时间
self.end = 0 结束时间
def __init__(self):
        super(Solution, self).__init__()
        # save tasks
        self.data = []
        self.name = ''
        self.service_time = 0
        self.arrival_time = 0
        self.state = ''
        self.number = 0
        self.timeout = 0
        self.start = 0
        self.end = 0

点击并拖拽以移动

(2)获取数据:

获取数据可以从文件(如.txt)中读入,亦可以从console读入。这里要求一个地方,就是数据的格式,名字,到达时间,服务时间。中间用空格分开。如下面表格:

name arrival_time service_time
A 0 5
B 1 4
C 2 1
D 4 2
E 5 1
def get_data_file(self):
        with open('data.txt', "r", encoding="utf-8") as file:
            for line in file.read().splitlines():
                name, arrival_time, service_time = line.split()
                # insert the task
                self.insert_data(name, arrival_time, service_time)
        file.close()
        # initial queue
        # sort first arrival_time and second service_time
        self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
        # update and recode id
        for i in range(self.number):
            self.data[i]['index'] = i

def get_data_input(self):
        print('How many tasks do you want input?')
        tasks_number = int(input('Please enter an integer of type int:'))
        print('Please enter name and arrival_time and service_time of task')
        print('such as:A 0 5')
        for _ in range(tasks_number):
            name, arrival_time, service_time = input('Please enter\n').split()
            self.insert_data(name, arrival_time, service_time)
        # initial queue
        # sort first arrival_time and second service_time
        self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
        # update and recode id
        for i in range(self.number):
            self.data[i]['index'] = i

点击并拖拽以移动

(3)进行调度:

也就是设计算法,来实现SJF。基本的算法思路,就是维护一个优先队列。如图:

img

点击并拖拽以移动

每次调度的时候根据需要,然后更新信息,更改作业的状态和到达和结束的时间。同时获取下一个或者多个作业,这里需要考虑到一种情况,就是当前时间片不能获取下一个作业,需要等待一段时间作业到达,才能执行。这种情况特判一下。然后执行排序,维护这个优先队列。

def implement(self):
        '''start algorithm'''
        # get first task
        data = [self.data[0]]
        # update the time of start
        self.start = self.end = data[0]['arrival_time']
        while data:
            # update information
            self.update_information(
                data[0]['index'], self.end, self.end + data[0]['service_time'])
            # get next task or tasks
            data += self.get_next_data(data.pop(0)['index'], data)
            # maintain the queue
            data = self.sort_data(data)
        self.data.sort(key=lambda x: x['id'])

点击并拖拽以移动

(4)排序和信息更新:

对于排序的实现其实很简单,前面的结构图也已经展示了,对于SJF算法一共有两种排序方式,分别在不同的过程进行使用。数据更新就是更新原始的数据,包括计算状态,开始时间,结束时间,周转时间,平均周转时间等等。

def update_information(self, index, start, end):
        self.data[index]['start'] = start
        self.data[index]['end'] = end
        self.data[index]['state'] = 'f'
        self.data[index]['turnaround_time'] = end - \
            self.data[index]['arrival_time']
        self.data[index]['authorized_turnover_time'] = self.data[index]['turnaround_time'] / \
            self.data[index]['service_time']
        self.start = start
        self.end = end
        self.show_data_running(start, end, self.data[index])

点击并拖拽以移动

(5)数据输出:

为什么要数据输出,其实这就是一个数据可视化的一种方法。也就是直观的表达各种信息。所以数据输出部分,就是自己设置自己的排版,布局,可以利用\t制表符来打表。

def show_data(self):
        print("{:<6}{:<10}{:<10}{:<10}{:<6}{:<8}{:<7}{:<6}".format(
            'name', 'arr_time', 'ser_time', 'state', '周转时间', '带权周转时间', 'start', 'end'))
        for task in sorted(self.data, key=lambda x: x['id']):
            print("{:<6}{:<10}{:<10}{:<10}{:<10}{:<14.2f}{:<7}{:<4}".format(
                task['name'],
                task['arrival_time'],
                task['service_time'],
                task['state'],
                task['turnaround_time'],
                task['authorized_turnover_time'],
                task['start'],
                task['end']))

点击并拖拽以移动

(6)plt生成调度图展示:

利用python的第三方库,根据数据进行绘图,然后展示出好看的图片。

def init_image(self):
        # size = 1000 * 500
        plt.figure('SJF', figsize=(10, 5))
        self.drow_image()
        # setting xticks for 0 to self.end + 2
        plt.xticks([i for i in range(self.end + 3)])
        # setting title
        plt.title('the time of task about SJF')

        plt.xlabel('')
        plt.ylabel('tasks')
        # setting yticks.such as A == 0
        plt.yticks(self.get_y_ticks()[0], self.get_y_ticks()[1])

点击并拖拽以移动

img点击并拖拽以移动

img点击并拖拽以移动

def drow_image(self):
        for task in self.data:
            # the time line of task from start to end
            plt.plot([task['start'], task['end']],
                     [task['id'], task['id']],
                     label=task['name'],
                     lw=2)
            # annotation of the key point
            plt.plot([task['end'], task['end']],
                     [-1, task['id']],
                     'k--',
                     lw=1)
        # legend
        plt.legend(loc='best')

点击并拖拽以移动

img点击并拖拽以移动img点击并拖拽以移动

def set_ax(self):
        ax = plt.gca()  # 获取到当前坐标轴信息
        ax.spines['right'].set_color('none')
        ax.spines['bottom'].set_color('none')
        ax.xaxis.set_ticks_position('top')   # 将X坐标轴移到上面
        ax.invert_yaxis()  # 反转Y坐标轴
        ax.grid(True, linestyle='-.')  # 网格

点击并拖拽以移动

def show_image(self):
        self.init_image()
        self.set_ax()
        plt.savefig('SJF.png', dpi=300)
        plt.show()

点击并拖拽以移动

程序执行过程:

支持两种输入方式,手动输入和数据导入。

数据导入:

img点击并拖拽以移动

原始数据

img点击并拖拽以移动

调度前:

img点击并拖拽以移动

调度中:

img点击并拖拽以移动

调度后:

img点击并拖拽以移动

生成调度图:

img点击并拖拽以移动

手动输入数据:

img点击并拖拽以移动

img点击并拖拽以移动

调度前

img点击并拖拽以移动 调度中

img点击并拖拽以移动

调度后

img点击并拖拽以移动

生成调度图:

img点击并拖拽以移动

程序源代码:

# -*- coding: utf-8 -*-
# @Author: wfy
# @Date:   2020-04-10 15:31:44
# @Last Modified by:   wfy
# @Last Modified time: 2020-04-14 13:46:31
import matplotlib.pyplot as plt


class Solution():
    """to achieve SJF"""

    def __init__(self):
        super(Solution, self).__init__()
        # save tasks
        self.data = []
        self.name = ''
        self.service_time = 0
        self.arrival_time = 0
        self.state = ''
        self.number = 0
        self.timeout = 0
        self.start = 0
        self.end = 0

    def insert_data(self, name, arrival_time, service_time):
        self.data.append({
            'id': self.number,
            'name': name,
            'arrival_time': int(arrival_time),
            'service_time': int(service_time),
            'state': 'w',
            'turnaround_time': 0,
            'authorized_turnover_time': 0,
            'start': 0,
            'end': 0
        })
        self.timeout = max(self.timeout, int(arrival_time))
        self.number += 1

    def get_data_file(self):
        with open('data.txt', "r", encoding="utf-8") as file:
            for line in file.read().splitlines():
                name, arrival_time, service_time = line.split()
                # insert the task
                self.insert_data(name, arrival_time, service_time)
        file.close()
        # initial queue
        # sort first arrival_time and second service_time
        self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
        # update and recode id
        for i in range(self.number):
            self.data[i]['index'] = i

    def get_data_input(self):
        print('How many tasks do you want input?')
        tasks_number = int(input('Please enter an integer of type int:'))
        print('Please enter name and arrival_time and service_time of task')
        print('such as:A 0 5')
        for _ in range(tasks_number):
            name, arrival_time, service_time = input('Please enter\n').split()
            self.insert_data(name, arrival_time, service_time)
        # initial queue
        # sort first arrival_time and second service_time
        self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
        # update and recode id
        for i in range(self.number):
            self.data[i]['index'] = i

    def show_data_running(self, start, end, data):
        print('-'*40)
        print("from {:} to {:}".format(start, end))
        print("task name:{:}".format(data['name']))
        print("task state:{:}\n".format('R'))

    def show_data(self):
        print("{:<6}{:<10}{:<10}{:<10}{:<6}{:<8}{:<7}{:<6}".format(
            'name', 'arr_time', 'ser_time', 'state', '周转时间', '带权周转时间', 'start', 'end'))
        for task in sorted(self.data, key=lambda x: x['id']):
            print("{:<6}{:<10}{:<10}{:<10}{:<10}{:<14.2f}{:<7}{:<4}".format(
                task['name'],
                task['arrival_time'],
                task['service_time'],
                task['state'],
                task['turnaround_time'],
                task['authorized_turnover_time'],
                task['start'],
                task['end']))

    def cmp(self):
        '''the method of sort'''
        return lambda x: (x['service_time'], x['arrival_time'], x['index'])

    def sort_data(self, data):
        return sorted(data, key=self.cmp())

    def update_information(self, index, start, end):
        self.data[index]['start'] = start
        self.data[index]['end'] = end
        self.data[index]['state'] = 'f'
        self.data[index]['turnaround_time'] = end - \
            self.data[index]['arrival_time']
        self.data[index]['authorized_turnover_time'] = self.data[index]['turnaround_time'] / \
            self.data[index]['service_time']
        self.start = start
        self.end = end
        self.show_data_running(start, end, self.data[index])

    def get_next_data(self, index,  data):
        # get tasks from the beginning to the end of the current task
        result = [x for x in self.data if x['arrival_time'] <=
                  self.end and x['state'] == 'w' and x not in data]
        if result or data:
            return result
        # no tasks entered at current time
        for task in self.data:
            if task['state'] == 'w':
                self.start = self.end = task['arrival_time']
                return [task]
        return []

    def implement(self):
        '''start algorithm'''
        # get first task
        data = [self.data[0]]
        # update the time of start
        self.start = self.end = data[0]['arrival_time']
        while data:
            # update information
            self.update_information(
                data[0]['index'], self.end, self.end + data[0]['service_time'])
            # get next task or tasks
            data += self.get_next_data(data.pop(0)['index'], data)
            # maintain the queue
            data = self.sort_data(data)
        self.data.sort(key=lambda x: x['id'])

    def get_y_ticks(self):
        return [x['id'] for x in self.data] + [self.data[-1]['id'] + 1], [x['name'] for x in self.data] + ['']

    def init_image(self):
        # size = 1000 * 500
        plt.figure('SJF', figsize=(10, 5))
        self.drow_image()
        # setting xticks for 0 to self.end + 2
        plt.xticks([i for i in range(self.end + 3)])
        # setting title
        plt.title('the time of task about SJF')

        plt.xlabel('')
        plt.ylabel('tasks')
        # setting yticks.such as A == 0
        plt.yticks(self.get_y_ticks()[0], self.get_y_ticks()[1])

    def drow_image(self):
        for task in self.data:
            # the time line of task from start to end
            plt.plot([task['start'], task['end']],
                     [task['id'], task['id']],
                     label=task['name'],
                     lw=2)
            # annotation of the key point
            plt.plot([task['end'], task['end']],
                     [-1, task['id']],
                     'k--',
                     lw=1)
        # legend
        plt.legend(loc='best')

    def set_ax(self):
        ax = plt.gca()  # 获取到当前坐标轴信息
        ax.spines['right'].set_color('none')
        ax.spines['bottom'].set_color('none')
        ax.xaxis.set_ticks_position('top')   # 将X坐标轴移到上面
        ax.invert_yaxis()  # 反转Y坐标轴
        ax.grid(True, linestyle='-.')  # 网格

    def show_image(self):
        self.init_image()
        self.set_ax()
        plt.savefig('SJF.png', dpi=300)
        plt.show()

    def main(self):
        if input('Do you want get data by file? y/Y or n/N\n') in ['y', 'Y']:
            SJF.get_data_file()
        else:
            SJF.get_data_input()
        SJF.show_data()
        SJF.implement()
        SJF.show_data()
        SJF.show_image()


if __name__ == '__main__':
    try:
        SJF = Solution()
        SJF.main()
    except Exception as e:
        print('An exception', e)
    else:
        print('Finish')
    finally:
        print('finally')
posted @ 2020-04-26 18:10  爱记笔记的小王同学  阅读(537)  评论(1编辑  收藏  举报