[codevs 1035] 火车停留
http://codevs.cn/problem/1035/
题解:
看到题后第一反应应该是把容量作为限制车站个数的条件。那么就以火车为单位建图了。
拆点,X->Xi,Xj,建立源点、汇点,源点向每个点Xi连边,Xj向汇点连边,Xi向Xj连边,表示火车进站,所以费用设为-cost,接下来对火车之间的关系进行计算,如果两辆火车可以进入同一个车站,就从Xj向Yi连边。为了限制车站个数,建立超级源和超级汇,分别和源点与汇点相连,容量作为车站数量。最后跑最小费用最大流取相反数输出。
代码:
总时间耗费: 33ms
总内存耗费: 744B
#include<cstdio> #include<iostream> #include<vector> #include<queue> #include<algorithm> using namespace std; const int maxn = 200 + 10; const int maxm = 100 + 10; const int INF = 1e9 + 7; struct Edge { int from, to, cap, flow, cost; }; int n, s, t; vector<int> G[maxn]; vector<Edge> edges; void AddEdge(int from, int to, int cap, int cost) { edges.push_back((Edge){from, to, cap, 0, cost}); edges.push_back((Edge){to, from, 0, 0, -cost}); int m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } int d[maxn], p[maxn], a[maxn]; bool inq[maxn]; bool BellmanFord(int& cost) { memset(inq, 0, sizeof(inq)); for(int i = s; i <= t; i++) d[i] = INF; d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while(!Q.empty()) { int x = Q.front(); Q.pop(); inq[x] = 0; for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(e.cap > e.flow && d[e.to] > d[x] + e.cost) { d[e.to] = d[x] + e.cost; a[e.to] = min(a[x], e.cap-e.flow); p[e.to] = G[x][i]; if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return 0; cost += d[t]*a[t]; int x = t; while(x != s) { edges[p[x]].flow += a[t]; edges[p[x]^1].flow -= a[t]; x = edges[p[x]].from; } return 1; } int MincostMaxflow() { int cost = 0; while(BellmanFord(cost)); return cost; } int reach[maxm], stay[maxm]; int main() { int n, m, s0, t0; cin >> n >> m; s = 0; t = m+m+3; t0 = t-2; s0 = t-1; AddEdge(s, s0, n, 0); AddEdge(t0, t, n, 0); for(int i = 1; i <= m; i++) { AddEdge(s0, i, 1, 0); AddEdge(i+m, t0, 1, 0); int cost; cin >> reach[i] >> cost >> stay[i]; AddEdge(i, i+m, 1, -cost); } for(int i = 1; i <= m; i++) for(int j = 1; j <= m; j++) if(reach[i] + stay[i] < reach[j]) AddEdge(i+m, j, 1, 0); printf("%.2lf\n", -0.01*MincostMaxflow()); return 0; }