bzoj4710 [Jsoi2011]分特产

Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4
1 3 3 5

Sample Output

384835

 

正解:组合数学+容斥原理。

因为要保证每个人都有特产,所以很不好处理。我们可以考虑容斥,即求出所有情况,再减去至少一个人没有特产的情况,再加上至少两个人没有特产的情况。。。以此类推

设$n$个人的所有情况为$f[n]$。显然我们可以分开考虑每一种特产,对于每一种特产我们就是要把它丢到$n$个人里,且可以有人没有特产,那么答案就是可重组合$\binom{n+r-1}{n-1}$,把所有的特产的方案乘起来,得到$f[n]$的值。

然后容斥,$Ans=\binom{n}{0}f[n]-\binom{n}{1}f[n-1]+\binom{n}{2}f[n-2]-...$,于是这道题就做完了。

 

复制代码
 1 #include <bits/stdc++.h>
 2 #define il inline
 3 #define RG register
 4 #define ll long long
 5 #define rhl (1000000007)
 6 #define N (3010)
 7 
 8 using namespace std;
 9 
10 int fac[N],ifac[N],inv[N],a[N],n,m,ans;
11 
12 il int gi(){
13   RG int x=0,q=1; RG char ch=getchar();
14   while ((ch<'0' || ch>'9') && ch!='-') ch=getchar();
15   if (ch=='-') q=-1,ch=getchar();
16   while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar();
17   return q*x;
18 }
19 
20 il int C(RG int n,RG int m){
21   if (n<m) return 0;
22   return 1LL*fac[n]*ifac[m]%rhl*ifac[n-m]%rhl;
23 }
24 
25 int main(){
26 #ifndef ONLINE_JUDGE
27   freopen("product.in","r",stdin);
28   freopen("product.out","w",stdout);
29 #endif
30   n=gi(),m=gi();
31   for (RG int i=1;i<=m;++i) a[i]=gi();
32   fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=1;
33   for (RG int i=2;i<=3000;++i){
34     fac[i]=1LL*fac[i-1]*i%rhl;
35     inv[i]=1LL*(rhl-rhl/i)*inv[rhl%i]%rhl;
36     ifac[i]=1LL*ifac[i-1]*inv[i]%rhl;
37   }
38   for (RG int i=1,res;i<=n;++i){
39     res=1;
40     for (RG int j=1;j<=m;++j)
41       res=1LL*res*C(i+a[j]-1,i-1)%rhl;
42     if ((n-i)&1){
43       ans=(ans-1LL*res*C(n,n-i))%rhl;
44       if (ans<0) ans+=rhl;
45     } else ans=(ans+1LL*res*C(n,n-i))%rhl;
46   }
47   cout<<ans; return 0;
48 }
复制代码

 

posted @   wfj_2048  阅读(177)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示