bzoj3456 城市规划

Description

求含有n个点有标号的无向联通图的个数(没有重边),n<=130000

Input

3

Output

4

 

正解:组合数学+$分治FFT$/多项式求逆。

并没有权限号,但是某$oj$里有这道题。。

 

我们考虑递推,$f[i]$表示$i$个点的联通图个数,那么用总数减去不合法的数量。

考虑枚举$1$号点所在的联通块的点数,那么我们可以得到:

$f[n]=2^{\binom{n}{2}}-\sum_{i=1}^{n-1}f[i]*\binom{n-1}{i-1}*2^{\binom{n-i}{2}}$

那么这个式子把组合数拆开以后就能直接上分治$FFT$了,复杂度$O(nlog^{2}n)$

 

分治$FFT$:

 1 #include <bits/stdc++.h>
 2 #define il inline
 3 #define RG register
 4 #define ll long long
 5 #define rhl (1004535809)
 6 #define N (1000010)
 7 #define G (3)
 8 
 9 using namespace std;
10 
11 int fac[N],ifac[N],inv[N],cal[N],w[N],rev[N],f[N],a[N],b[N],n;
12 
13 il int qpow(RG int a,RG ll b){
14   RG int ans=1;
15   while (b){
16     if (b&1) ans=1LL*ans*a%rhl;
17     a=1LL*a*a%rhl,b>>=1;
18   }
19   return ans;
20 }
21 
22 il void pre(){
23   fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=cal[0]=cal[1]=1;
24   for (RG int i=2;i<=n;++i){
25     fac[i]=1LL*fac[i-1]*i%rhl;
26     inv[i]=1LL*(rhl-rhl/i)*inv[rhl%i]%rhl;
27     ifac[i]=1LL*ifac[i-1]*inv[i]%rhl;
28     cal[i]=qpow(2,1LL*i*(i-1)>>1);
29   }
30   for (RG int i=1,v=1;i<=(n<<1);++v,i<<=1)
31     w[v]=qpow(G,(rhl-1)/(i<<1));
32   return;
33 }
34 
35 il void NTT(int *a,RG int n,RG int f){
36   for (RG int i=0;i<n;++i) if (i<rev[i]) swap(a[i],a[rev[i]]);
37   for (RG int i=1,v=1;i<n;++v,i<<=1){
38     RG int gn=w[v],x,y;
39     for (RG int j=0;j<n;j+=i<<1){
40       RG int g=1;
41       for (RG int k=0;k<i;++k,g=1LL*g*gn%rhl){
42     x=a[j+k],y=1LL*g*a[j+k+i]%rhl;
43     a[j+k]=x+y; if (a[j+k]>=rhl) a[j+k]-=rhl;
44     a[j+k+i]=x-y; if (a[j+k+i]<0) a[j+k+i]+=rhl;
45       }
46     }
47   }
48   if (f==1) return; reverse(a+1,a+n); RG int inv=qpow(n,rhl-2);
49   for (RG int i=0;i<n;++i) a[i]=1LL*a[i]*inv%rhl; return;
50 }
51 
52 il void solve(RG int l,RG int r){
53   if (l==r){
54     f[l]=(cal[l]-1LL*fac[l-1]*f[l]%rhl+rhl)%rhl;
55     return;
56   }
57   RG int mid=(l+r)>>1; solve(l,mid);
58   RG int m=max(mid-l+1,r-mid),len,lg=0;
59   for (len=1;len<=(m<<1);len<<=1) ++lg;
60   for (RG int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1)),a[i]=b[i]=0;
61   for (RG int i=l;i<=mid;++i) a[i-l]=1LL*f[i]*ifac[i-1]%rhl;
62   for (RG int i=1;i<=r-l;++i) b[i]=1LL*cal[i]*ifac[i]%rhl;
63   NTT(a,len,1),NTT(b,len,1); for (RG int i=0;i<len;++i) a[i]=1LL*a[i]*b[i]%rhl;
64   NTT(a,len,-1); for (RG int i=mid+1;i<=r;++i) f[i]=(f[i]+1LL*a[i-l])%rhl;
65   solve(mid+1,r); return;
66 }
67 
68 int main(){
69 #ifndef ONLINE_JUDGE
70   freopen("city.in","r",stdin);
71   freopen("city.out","w",stdout);
72 #endif
73   cin>>n; pre(); solve(1,n);
74   printf("%d\n",f[n]);
75   return 0;
76 }

 

我们还可以继续化简,得到:

$\sum_{i=1}^{n}f[i]*\binom{n-1}{i-1}*2^{\binom{n-i}{2}}=2^{\binom{n}{2}}$

$\sum_{i=1}^{n}f[i]*(i-1)!^{-1}*2^{\binom{n-i}{2}}*(n-i)!^{-1}=2^{\binom{n}{2}}*(n-1)!^{-1}$

注意到上式其实是两个多项式卷积等于第三个多项式的形式,那么我们可以用多项式求逆来解决这个问题,复杂度$O(nlogn)$。

 

多项式求逆:

 1 #include <bits/stdc++.h>
 2 #define il inline
 3 #define RG register
 4 #define ll long long
 5 #define rhl (1004535809)
 6 #define N (1000010)
 7 #define G (3)
 8 
 9 using namespace std;
10 
11 int fac[N],ifac[N],inv[N],cal[N],w[N],rev[N],a[N],b[N],invb[N],tmp[N],n,m;
12 
13 il int qpow(RG int a,RG ll b){
14   RG int ans=1;
15   while (b){
16     if (b&1) ans=1LL*ans*a%rhl;
17     a=1LL*a*a%rhl,b>>=1;
18   }
19   return ans;
20 }
21 
22 il void pre(){
23   fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=cal[0]=cal[1]=1;
24   for (RG int i=2;i<=n;++i){
25     fac[i]=1LL*fac[i-1]*i%rhl;
26     inv[i]=1LL*(rhl-rhl/i)*inv[rhl%i]%rhl;
27     ifac[i]=1LL*ifac[i-1]*inv[i]%rhl;
28     cal[i]=qpow(2,1LL*i*(i-1)>>1);
29   }
30   for (RG int i=1,v=1;i<=(n<<1);++v,i<<=1)
31     w[v]=qpow(G,(rhl-1)/(i<<1));
32   return;
33 }
34 
35 il void NTT(int *a,RG int n,RG int f){
36   for (RG int i=0;i<n;++i) if (i<rev[i]) swap(a[i],a[rev[i]]);
37   for (RG int i=1,v=1;i<n;++v,i<<=1){
38     RG int gn=w[v],x,y;
39     for (RG int j=0;j<n;j+=i<<1){
40       RG int g=1;
41       for (RG int k=0;k<i;++k,g=1LL*g*gn%rhl){
42     x=a[j+k],y=1LL*g*a[j+k+i]%rhl;
43     a[j+k]=x+y; if (a[j+k]>=rhl) a[j+k]-=rhl;
44     a[j+k+i]=x-y; if (a[j+k+i]<0) a[j+k+i]+=rhl;
45       }
46     }
47   }
48   if (f==1) return; reverse(a+1,a+n); RG int inv=qpow(n,rhl-2);
49   for (RG int i=0;i<n;++i) a[i]=1LL*a[i]*inv%rhl; return;
50 }
51 
52 il void getinv(int *a,int *b,RG int n){
53   if (n==1){ b[0]=qpow(a[0],rhl-2); return; } getinv(a,b,n>>1);
54   for (RG int i=0;i<n;++i) tmp[i]=a[i],tmp[n+i]=0;
55   RG int lg=0,m=0; for (m=1;m<=n;m<<=1) ++lg;
56   for (RG int i=0;i<m;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
57   NTT(tmp,m,1),NTT(b,m,1);
58   for (RG int i=0;i<m;++i) tmp[i]=((b[i]<<1)-1LL*b[i]*b[i]%rhl*tmp[i]%rhl+rhl)%rhl;
59   NTT(tmp,m,-1); for (RG int i=0;i<n;++i) b[i]=tmp[i],b[n+i]=0; return;
60 }
61 
62 int main(){
63 #ifndef ONLINE_JUDGE
64   freopen("city.in","r",stdin);
65   freopen("city.out","w",stdout);
66 #endif
67   cin>>n; pre(); for (m=1;m<=n;m<<=1);
68   for (RG int i=1;i<=n;++i) a[i]=1LL*cal[i]*ifac[i-1]%rhl;
69   for (RG int i=0;i<=n;++i) b[i]=1LL*cal[i]*ifac[i]%rhl;
70   getinv(b,invb,m),NTT(a,m<<1,1),NTT(invb,m<<1,1);
71   for (RG int i=0;i<(m<<1);++i) a[i]=1LL*a[i]*invb[i]%rhl;
72   NTT(a,m<<1,-1); printf("%lld\n",1LL*a[n]*fac[n-1]%rhl);
73   return 0;
74 }

 

posted @ 2017-08-12 22:24  wfj_2048  阅读(215)  评论(0编辑  收藏  举报