bzoj4010 [HNOI2015]菜肴制作
Description
知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。
ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1。由于菜肴之间口味搭配的问题,某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如“i 号菜肴‘必须’先于 j 号菜肴制作”的限制,我们将这样的限制简写为<i,j>。现在,酒店希望能求出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:也就是说,(1)在满足所有限制的前提下,1 号菜肴“尽量”优先制作;(2)在满足所有限制,1号菜肴“尽量”优先制作的前提下,2号菜肴“尽量”优先制作;(3)在满足所有限制,1号和2号菜肴“尽量”优先的前提下,3号菜肴“尽量”优先制作;(4)在满足所有限制,1 号和 2 号和 3 号菜肴“尽量”优先的前提下,4 号菜肴“尽量”优先制作;(5)以此类推。
例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。例2:共5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。例1里,首先考虑 1,因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号又应“尽量”比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来考虑2,确定最终的制作顺序是 3,4,1,2。例 2里,首先制作 1是不违背限制的;接下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。 现在你需要求出这个最优的菜肴制作顺序。无解输出“Impossible!” (不含引号,首字母大写,其余字母小写)
Input
第一行是一个正整数D,表示数据组数。
接下来是D组数据。
对于每组数据:
第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限制的条目数。
接下来M行,每行两个正整数x,y,表示“x号菜肴必须先于y号菜肴制作”的限制。(注意:M条限制中可能存在完全相同的限制)
Output
输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者”Impossible!”表示无解(不含引号)。
Sample Input
3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
Sample Output
1 5 3 4 2
Impossible!
1 5 2 4 3
Impossible!
1 5 2 4 3
HINT
【样例解释】
第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。
100%的数据满足N,M<=100000,D<=3。
正解:拓扑排序+堆。
HNOI出傻逼题,真是喜闻乐见。。
我们考虑拓扑排序,要保证先优先小的,再优先大的。如果我们直接拓扑排序的话,是没有办法保证这种情况的。于是我们考虑反向连边,求拓扑反序。这样我们只要保证先优先尽量大的就行。我们把队列改成优先队列就行了。
1 //It is made by wfj_2048~ 2 #include <algorithm> 3 #include <iostream> 4 #include <complex> 5 #include <cstring> 6 #include <cstdlib> 7 #include <cstdio> 8 #include <vector> 9 #include <cmath> 10 #include <queue> 11 #include <stack> 12 #include <map> 13 #include <set> 14 #define inf (1<<30) 15 #define N (100010) 16 #define il inline 17 #define RG register 18 #define ll long long 19 #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) 20 21 using namespace std; 22 23 struct edge{ int nt,to; }g[2*N]; 24 25 priority_queue <int> Q; 26 27 int head[N],d[N],st[N],n,m,num,top; 28 29 il int gi(){ 30 RG int x=0,q=1; RG char ch=getchar(); while ((ch<'0' || ch>'9') && ch!='-') ch=getchar(); 31 if (ch=='-') q=-1,ch=getchar(); while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q*x; 32 } 33 34 il void insert(RG int from,RG int to){ g[++num]=(edge){head[from],to},head[from]=num; return; } 35 36 il int topsort(){ 37 for (RG int i=1;i<=n;++i) if (!d[i]) Q.push(i); 38 while (!Q.empty()){ 39 RG int x=Q.top(),v; Q.pop(),st[++top]=x; 40 for (RG int i=head[x];i;i=g[i].nt){ 41 v=g[i].to,d[v]--; if (!d[v]) Q.push(v); 42 } 43 } 44 for (RG int i=1;i<=n;++i) if (d[i]) return 0; 45 while (!Q.empty()) st[++top]=Q.top(),Q.pop(); 46 return 1; 47 } 48 49 il void work(){ 50 n=gi(),m=gi(); RG int x,y; num=top=0; 51 memset(head,0,sizeof(head)),memset(d,0,sizeof(d)); 52 for (RG int i=1;i<=m;++i) x=gi(),y=gi(),insert(y,x),d[x]++; 53 if (!topsort()) puts("Impossible!"); 54 else{ for (RG int i=top;i;--i) printf("%d ",st[i]); printf("\n"); } 55 return; 56 } 57 58 int main(){ 59 File("dishes"); 60 RG int T=gi(); 61 while (T--) work(); 62 return 0; 63 }