bzoj1497 [NOI2006]最大获利

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

 

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

 

 

正解:最小割。

将题意转化为图论模型,从源点到每个用户群连一条ci的边,从每个中转站到汇点连一条pi的边,从每个用户群到对应的中转站连一条inf的边,那么没有使用的中转站成本+没有获利的用户群利润就是最小割,所以ans=∑ci-maxflow。

其实这就是最大权闭合子图。。

 

 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #define il inline
 7 #define RG register
 8 #define ll long long
 9 #define inf (1<<30)
10 
11 
12 using namespace std;
13 
14 struct edge{ int nt,to,flow,cap; }g[320010];
15 
16 int head[60010],q[60010],d[60010],vis[60010],n,m,tot,num=1;
17 
18 il int gi(){
19     RG int x=0,q=1; RG char ch=getchar(); while ((ch<'0' || ch>'9') && ch!='-') ch=getchar();
20     if (ch=='-') q=-1,ch=getchar(); while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q*x;
21 }
22 
23 il void insert(RG int from,RG int to,RG int cap){ g[++num]=(edge){head[from],to,0,cap},head[from]=num; return; }
24 
25 il int bfs(RG int st,RG int ed){
26     memset(vis,0,sizeof(vis));
27     RG int h=0,t=1; q[t]=st,d[st]=0,vis[st]=1;
28     while (h<t){
29     RG int x=q[++h];
30     for (RG int i=head[x];i;i=g[i].nt){
31         RG int v=g[i].to;
32         if (!vis[v] && g[i].cap>g[i].flow)
33         q[++t]=v,d[v]=d[x]+1,vis[v]=1;
34     }
35     }
36     return vis[ed];
37 }
38 
39 il int dfs(RG int x,RG int ed,RG int a){
40     if (x==ed || a==0) return a;
41     RG int flow=0,f;
42     for (RG int i=head[x];i;i=g[i].nt){
43     RG int v=g[i].to;
44     if (d[x]+1==d[v] && (f=dfs(v,ed,min(a,g[i].cap-g[i].flow)))>0){
45         g[i].flow+=f,g[i^1].flow-=f,flow+=f,a-=f; if (!a) break;
46     }
47     }
48     return flow;
49 }
50 
51 il int dinic(){
52     RG int flow=0;
53     while (bfs(n+m+1,n+m+2)) flow+=dfs(n+m+1,n+m+2,inf);
54     return flow;
55 }
56 
57 il void work(){
58     n=gi(),m=gi(); RG int p;
59     for (RG int i=1;i<=n;++i) p=gi(),insert(m+i,n+m+2,p),insert(n+m+2,m+i,0);
60     for (RG int i=1;i<=m;++i){
61     RG int a=gi(),b=gi(),c=gi(); tot+=c;
62     insert(n+m+1,i,c),insert(i,n+m+1,0);
63     insert(i,m+a,inf),insert(m+a,i,0);
64     insert(i,m+b,inf),insert(m+b,i,0);
65     }
66     printf("%d\n",tot-dinic()); return;
67 }
68 
69 int main(){
70     freopen("profit.in","r",stdin);
71     freopen("profit.out","w",stdout);
72     work();
73     return 0;
74 }

 

posted @ 2017-01-26 22:51  wfj_2048  阅读(138)  评论(0编辑  收藏  举报