几何题2

$ \triangle ABC $ 的内心为 \(I\),内切圆分别切边 \(BC\)\(CA\)\(AB\)\(D\)\(E\)\(F\).直线 \(BI\)\(CI\)\(DI\) 分别交 \(EF\)\(M\)\(N\)\(K\).直线 \(BN\)\(CM\) 交于点 \(P\),直线 \(AK\)\(BC\) 交于点 \(G\).过 \(I\) 垂直于 \(PG\) 的直线,与过 \(P\) 垂直于 \(PB\) 的直线交于 \(Q\).证明:直线 \(BI\) 平分线段 \(PQ\)

如图,设 \(BP\) 中点为 \(L\)\(BI\)\(PQ\)\(J\),连结 \(PK\)\(IE\)\(IF\)\(GL\).以下通过导出一些结论逐渐证明本题.

结论 \(\text{1}\)\(N\)\(M\)\(C\)\(B\) 四点共圆,且 \(BC\) 是直径.

证明:易知 \(\angle BFM = 90^\circ + \frac{\angle A}{2}\)\(\angle FBM = \frac{\angle B}{2}\),于是 \(\angle FMB = \frac{\angle C}{2} = \angle ACI\),故 \(M\)\(E\)\(C\)\(I\) 四点共圆,有 \(\angle BMC = \angle IEC = 90^\circ\).同理,\(\angle BNC = 90^\circ\),结论得证.

由此结论还可以导出 \(I\)\(\triangle PBC\) 的垂心,又由于 \(KD \perp BC\),于是 \(P\)\(K\)\(I\)\(D\) 共线.

结论 \(\text{2}\)\(G\)\(BC\) 的中点.

证明:由分角定理,\(\frac{EK}{FK} = \frac{AE \cdot \sin \angle EAK}{AF \cdot \sin \angle FAK} = \frac{IE \cdot \sin \angle EIK}{IF \cdot \sin \angle FIK}\),而 \(AE = AF\)\(IE = IF\),故 \(\frac{\sin \angle EAK}{\sin \angle FAK} = \frac{\sin \angle EIK}{\sin \angle FIK}\),而 \(\frac{\sin \angle EIK}{\sin \angle FIK} = \frac{\sin \angle C}{\sin \angle B} = \frac{AB}{AC}\),那么 \(\frac{\sin \angle EAK}{\sin \angle FAK} = \frac{AB}{AC}\).于是 \(\frac{BG}{CG} = \frac{AB \cdot \sin \angle BAG}{ AC \cdot \sin \angle CAG} = 1\),结论得证.

于是 \(GL\) 是中位线,有 \(GL \parallel CP\),那么 \(\angle BGL = \angle BCP = \frac{\angle C}{2} + \angle ICM = \frac{\angle C}{2} + \angle IEF = \frac{\angle A + \angle C}{2} = 90^\circ - \frac{\angle B}{2} = \angle PIJ\)

由于 \(PQ \perp BP\)\(IQ \perp PG\)\(PI \perp BG\),故 \(\triangle BPG \sim \triangle PQI\).而 \(\angle BGL = \angle PIJ\),那么 \(L\)\(J\) 是对应点,故 \(J\)\(PQ\) 的中点,即 \(BI\) 平分 \(PQ\).证毕.

posted @ 2023-06-27 23:09  wf715  阅读(29)  评论(0编辑  收藏  举报