样本方差性质及其应用

(1)如果$DX$存在,则$E{{S}^{2}}=DX,EM_{2}^{*}=\frac{n-1}{n}DX$;

(2)对任意实数$\mu $,有

                        $\sum\limits_{i=1}^{n}{({{X}_{i}}}-\overline{X}{{)}^{2}}\le \sum\limits_{i=1}^{n}{({{X}_{i}}}-\mu {{)}^{2}}$.

证明 :

(1)               $E{{S}^{2}}=E\frac{1}{n-1}({{\sum\limits_{i=1}^{n}{X_{i}^{2}-n\overline{X}}}^{2}})=\frac{1}{n-1}(\sum\limits_{i=1}^{n}{EX_{i}^{2}-nE{{\overline{X}}^{2}}^{{}})}$
                                             $=\frac{n}{n-1}(E{{X}^{2}}-E{{\overline{X}}^{2}})=\frac{n}{n-1}(DX+{{(EX)}^{2}}-D\overline{X}-{{(E\overline{X})}^{2}})$
                                              $=\frac{n}{n-1}(DX+{{(EX)}^{2}}-\frac{DX}{n}-{{(EX)}^{2}})=DX$

(2)                    ${{\sum\limits_{i=1}^{n}{({{X}_{i}}-\overline{X})}}^{2}}={{\sum\limits_{i=1}^{n}{(({{X}_{i}}-\mu )+(\mu -\overline{X}))}}^{2}}$
                                            $=\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\mu )}^{2}}}+n{{(\mu -\overline{X})}^{2}}+2(\mu -\overline{X})\sum\limits_{i=1}^{n}{({{X}_{i}}-\mu )}$
                                            $=\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\mu )}^{2}}}+n{{(\mu -\overline{x})}^{2}}-2(\mu -\overline{X})(n\mu -\sum\limits_{i=1}^{n}{{{X}_{i}}})$
                                            $=\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\mu )}^{2}}}-n{{(\mu -\overline{X})}^{2}}\le \sum\limits_{i=1}^{n}{{{({{X}_{i}}-\mu )}^{2}}}$

posted @ 2018-05-15 21:10  王姑娘呀~  阅读(385)  评论(0编辑  收藏  举报