Shell Necklace (dp递推改cdq分治 + fft)
首先读出题意,然后发现这是一道DP,我们可以获得递推式为
然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法,时间复杂度又变成O(n2 * log n),显然不可以。然后又利用c分治思维吧问题进行拆分问题但是,前面求出来的结果对后面的结果会产生影响,所以我们使用cdq分治思想来解决这个问题,时间复杂度变为O(n * log2n)。
#include<bits/stdc++.h> using namespace std; const double pi = acos(-1.0); const int mod = 313; const int maxn = 4e5 + 7; int in[maxn], dp[maxn]; struct Complex{ double r,i; Complex(double r = 0.0, double i = 0.0):r(r),i(i){}; Complex operator+(const Complex &rhs){ return Complex(r + rhs.r, i + rhs.i); } Complex operator-(const Complex &rhs){ return Complex(r - rhs.r, i - rhs.i); } Complex operator*(const Complex & rhs){ return Complex(r*rhs.r - i*rhs.i, i*rhs.r + r * rhs.i); } }x1[maxn],x2[maxn]; void rader(Complex *F, int len){ int j = len >> 1; for(int i = 1, j = len/2; i < len - 1; i ++){ if(i < j)swap(F[i], F[j]); int k = len / 2; while(j >= k){ j -= k; k /= 2; } if(j < k) j += k; } } void FFT(Complex *F, int len, int t){ rader(F, len); for(int h = 2; h <= len; h <<= 1){ Complex wn(cos(-t*2*pi/h), sin(-t*2*pi/h)); for(int j = 0; j < len; j += h){ Complex E(1, 0); for(int k = j; k < j + h/2; k ++){ Complex u = F[k]; Complex v = E * F[k + h/2]; F[k] = u + v; F[k + h/2] = u - v; E = E * wn; } } } if(t == -1) for(int i = 0; i < len; i ++) F[i].r /= len; } void cdq(int l, int r){ if(l == r){ dp[l] = (in[l]+dp[l])%mod; return ; } int m = l + r>>1; cdq(l,m); int len1 = r - l + 1; int len2 = m - l + 1; int len = 1;while(len < (len1 + len2)) len <<= 1; for(int i = 0; i < len; i ++) x1[i] = x2[i] = Complex(0,0); for(int i = 0; i < len2; i ++) x1[i] = Complex(dp[i + l], 0); for(int i = 0; i < len1; i ++) x2[i] = Complex(in[i], 0); FFT(x1, len, 1);FFT(x2, len, 1); for(int i = 0; i < len; i ++) x1[i] = x1[i] * x2[i]; FFT(x1, len, -1); for(int i = m + 1; i <= r; i ++) dp[i] = (dp[i] + (int)(x1[i - l].r + 0.5)) % mod; cdq(m + 1, r); } int main(){ int n; while(~scanf("%d",&n), n){ for(int i = 1; i <= n; i ++){ scanf("%d",&in[i]); in[i] %= mod; } memset(dp, 0, sizeof(dp)); cdq(1, n); printf("%d\n", dp[n] % mod); for(int i = 0; i <= n; i ++)printf("%d ",dp[i]);printf("\n"); } return 0; }
more crazy more get!