C# 中文分词[基于统计的朴素贝叶斯算法]

  
主要思想:
1. 要有一个语料库
2. 统计每个词出现的频率, 一会来做朴素贝叶斯候选
3. 举例: 中国人民共和国的
    其中语料库中有中国, 人民, 中国人, 共和国等等的词组. 
现在输入: 中国人都爱中华人民共和国;
分词的时候取max( 各种分发得到的score ); 
例如: solution1:中国人_都爱中华人民_共和国
solution2:中国_人_都爱中华人民_共和国
solution3:中国_人_都爱_中华_人民_共和国 

              bestSegSolution = max( solutions(segSlution[i] ));

      4.对于一句汉字的分词可以看做

               seg( StringIn ) =  firPart + seg(StringIn – firPart); //   我用score来衡量当前分词结果的好坏

      6。 朴素贝叶斯的意思就是: 分词后的, 两个词之间是相互独立的, 也就是后者的出现与前者无关

5. 这个只是初级版, 很简单, 需要再加点东西, 结果会更加的完美.. 当然, 按照做事情的原则, 都是从简单开始做的, 再努力
  
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Windows.Forms;
using System.IO;
using System.Diagnostics;

namespace ChineseWordSeg
{
    class NaiveBayes
    {
        private string wordLibPath = "../WordLib/pku_training.txt";//所用的训练库是pku的语料库.
        bool trained = false;
        private Dictionary<string, long> wordLib = new Dictionary<string, long>();
        private Dictionary<string, long> singleWordLib = new Dictionary<string, long>();
        int maxLen = 0;
        long maxScore = 0;
        private string segPos = " "; //记录单句的分割点, 按照标点等非汉字的字符分开
        private string segSentence = " "; // 记录整个段落的

        // 是不是中文字符
        bool isChineseWord(char chr ){
            if (chr >= 0x4E00 && chr <= 0x9FFF) return true;
            return false;
        }

        public void trainDate( string path ) {
 // 统计每个词出现的次数           

//1. 统计每个词组频率, naiveBayes消歧. 将一个组合不同的方式取得较大概率的那个分组方式.
// 难道每个词还是hash一下么?
//2. 统计每个字的频率, 就像向心力那样... 看看到底哪两个字比较容易联系到一起 这个是一句废话,因为我没这么去做
            wordLib.Clear();

            DirectoryInfo dirInfo = new DirectoryInfo(path);
            DirectoryInfo tmpDir = dirInfo.Parent;
            string savePath = tmpDir.FullName;
            FileInfo fInfo = new FileInfo(wordLibPath);
            string fileNamePre = fInfo.Name;
            savePath += "\\" + fileNamePre + "_trained";
            FileInfo infoOfDB = new FileInfo(savePath);

            if( File.Exists(savePath) && infoOfDB.Length > 0 ){
              
                StreamReader sr1 =
                                new StreamReader(@savePath);
                char[] sep = { ' '};
               
                while (sr1.Peek()!=-1)
                {
                    string[] keyValue = sr1.ReadLine().Split(sep);

                    wordLib[keyValue[0]] = Convert.ToInt32(keyValue[1]);

                }

                    return;
            }
           
            if ( !File.Exists( path ) ) {
                MessageBox.Show("ÓïÁÏ¿â·¾¶ÓÐ´í£¬Çë¼ì²é");
                return;
            }

            Stopwatch tm = new Stopwatch();
            tm.Start();
            StreamReader sr =
                        new StreamReader(@path,
                        System.Text.Encoding.GetEncoding("gb2312"));
           
            char tmpChar;
            string tmpStr;
            char[] tmpCArray = new char[100];

            {
                tmpStr = " ";
                bool flag = false;
                long tmpVal = 0;
                while (sr.Peek() != -1 ) {
                    tmpChar = (char)sr.Read();


                    if (isChineseWord( tmpChar ) )
                    {
                        flag = true;
                  /*
                                if (flag == true)
                                {
                                    string singleWord = (tmpChar).ToString();
                                    if (singleWordLib.ContainsKey(singleWord))
                                    {
                                        singleWordLib.TryGetValue(singleWord, out tmpVal);
                                        singleWordLib[singleWord] = tmpVal + 1;
                                    }
                                    else
                                        singleWordLib.Add(singleWord, 1);
                                    // ͳ¼Æÿ¸ö×ÖµÄ
       
                                }*/

       
                        tmpStr += (char)tmpChar;
                    }
                    else
                    {
                        tmpStr = tmpStr.Trim();
                        if (flag == true)
                        {
                            if( tmpStr.Length > 1 ){
                                if (wordLib.ContainsKey(tmpStr))
                                {
                                    wordLib.TryGetValue(tmpStr, out tmpVal);
                                    wordLib[tmpStr]=tmpVal + 1;
                                }
                                else
                                    wordLib.Add(tmpStr, 1);
                            }
                            else{
                                if (singleWordLib.ContainsKey(tmpStr))
                                {
                                    singleWordLib.TryGetValue(tmpStr, out tmpVal);
                                    singleWordLib[tmpStr] = tmpVal + 1;
                                }
                                else
                                    singleWordLib.Add(tmpStr, 1);
                            }
                            // ͳ¼Æÿ¸ö´Ê×éµÄ
                        }
                        tmpStr = " ";
                        flag = false;
                    }

                    if (maxLen < tmpStr.Length)
                    {
                        maxLen = tmpStr.Length;
                        // ¼Ç¼µ¥´Ê×î´óµÄ³¤¶È...
                    }
                }
            }
            sr.Close();

            StreamWriter sw = new StreamWriter(savePath);

           foreach ( string key in wordLib.Keys ) {
               sw.WriteLine( key + " " + wordLib[key]);
           }
           

           sw.Close();
          
           tm.Stop();

           MessageBox.Show(tm.Elapsed.Milliseconds.ToString(), "training done");
        }

//将分段好的结果传回.
        public string getSegedString( string  strIn ) {
            char[] seprator = { 's' };
            string[] segSplit = segSentence.Split(seprator);
            List<int> segP = new List<int>();
            segP.Clear();
            int j, i;
            int cntSegPos = 0;

            for( i = 0; i < segSplit.Length; i ++ ){
                if (segSplit[i].Length > 0)
                {
                    segP.Add(Convert.ToInt16(segSplit[i]));
                    cntSegPos++;
                }
            }

            char[] cArray = new char[512];
            cArray = strIn.ToCharArray();

            string strOut = " ";
            bool flag = true;
        
            for (i = 0, j = 0; i < strIn.Length; i++)
            {
               
               
                while (j < cntSegPos && segP.Contains(i))
                {
                    segP.Remove(i);
                    flag = !flag;
                    if (flag)
                        strOut += ")";
                    else strOut += "(";
                    j++;
                }
                strOut += cArray[i];
            }
            if (j < cntSegPos) strOut += ")";
            return strOut;
        }

// 恩, 做朴素贝叶斯分词
        public string doNaiveBayesSegmentation(string strIn, string trainDataPath){

            if( !trained )
            {
                trained = true;
                trainDate(trainDataPath);
            }

            string strTmp = " ";
            char[] charBuffer = new char[4096];
            charBuffer = strIn.ToCharArray();
            int i = 0, len = strIn.Length;

            while (  i < len )
            {
                while (  i < len && isChineseWord(charBuffer[i]) ) strTmp += charBuffer[i++];

                {
                   if(strTmp.Length > 0)
                   {
                        maxScore = 0;
                        segPos = " ";
                        naviveBayesSeg(strTmp, 0, "", i-strTmp.Length);
                        segSentence += segPos;
                   }
                   strTmp = "";
                }

                while (i < len && !isChineseWord(charBuffer[i])) i++;
            }

            return getSegedString(strIn);

        }

// 分词的具体实现, bestSegSolution = max( solutions(segSlution[i] ));

                                    对于一句汉字的分词可以看做 seg( StringIn ) =  firPart + seg(StringIn – firPart);

                                    我用score来衡量当前分词结果的好坏
        public void naviveBayesSeg(string strIn, long score, string seg, int tPos){

            if ( true ) {
                if( score > maxScore ) {
                    segPos = seg;
                    maxScore = score;

                }
               // return;
            }
            int strLen = strIn.Length;
            string firStr = "";
            int i = 0;
            for ( i = 1; i <= strIn.Length; i++) {
                firStr = strIn.Substring(0, i);
                if (wordLib.ContainsKey(firStr))
                {
                    naviveBayesSeg(strIn.Substring(i), score + wordLib[firStr], seg + (tPos + i - firStr.Length).ToString() + "s" + (tPos + i).ToString()+"s", tPos + i);
                }
            }

            if( i > strIn.Length && i > 1)
                naviveBayesSeg(strIn.Substring(1), score, seg, tPos + 1);

        }
    }
}

 

_

 

 

_

 

 

_

 

********************************************

 

****** Never ever let you down. *****

 

********************************************
posted @ 2010-08-31 11:56  westfruit  阅读(682)  评论(0编辑  收藏  举报