《剑指offer》数学题及其它 (牛客11.05)

比较多的思维题,涉及位运算、快速幂、二进制、约瑟夫问题、队列、贪心、dp等等。

难度 题目 知识点
12、数值的整数次方 细节,快速幂
☆☆ 47、求1+2+3+···+n 思维发散
☆☆ 48、不用加减乘除做加法 二进制运算
☆☆☆ 11、二进制中1的个数 补码,位运算
☆☆☆☆ 29、最小的K个数 查找第K大,或各种排序算法
31、从1到n整数中1出现的次数 思维
33、丑数 思维
41、和为S的连续正数序列 滑动窗口,双指针
42、和为S的两个数字 滑动窗口,双指针
45、扑克牌顺子 多种情况判断
☆☆☆ 46、圆圈中最后剩下的数 约瑟夫环,数学
☆☆☆ 63、数据流中的中位数 妙用堆,PriorityQueue
☆☆☆ 64、滑动窗口的最大值 模拟,滑动窗口,双端队列
☆☆☆ 67、剪绳子 贪心,动态规划

12、数值的整数次方+

细节,快速幂

给定一个double类型的浮点数 base 和 int 类型的整数exponent。求base的exponent次方。 保证base和exponent不同时为0

题意分析

指数可能为负数。

Java Code

class Solution {
public:
    double Power(double base, int exponent) {
        double ans=1;
        bool neg= false;
        if(exponent<0){
            neg=true;
            exponent=-exponent;
        }
        for( ; exponent; base*=base,exponent/=2){
            if(exponent&1){
                ans*=base;
            }
        }
        return neg?1/ans:ans;
    }
};

47、求1+2+3+···+n ++

思维发散

求1+2+3+...+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。

题意分析

需要思维发散,善用递归和短路运算,见代码。

Java Code

class Solution {
public:
    int Sum_Solution(int n) {
        int ans = n;
        ans && (ans += Sum_Solution(n - 1));
        return ans;
    }
};

48、不用加减乘除做加法++

二进制运算

写一个函数,求两个整数之和,要求在函数体内不得使用+、-、*、/四则运算符号。

题意分析

第一步:相加各位的值,不算进位,得到010,二进制每位相加就相当于各位做异或操作,101^111。
第二步:计算进位值,得到1010,相当于各位做与操作得到101,再向左移一位得到1010,(101&111)<<1。 第三步:重复上述两步, 各位相加 010^1010=1000,进位值为100=(010&1010)<<1。

继续重复上述两步:1000^100 = 1100,进位值为0,跳出循环,1100为最终结果。

注意循环终止条件。 有负数相加的情况。

Java Code

class Solution {
public:
    int Add(int num1, int num2)
    {    
        while(num2!=0){
            int tmp=num1^num2;
            num2=(num1 & num2)<< 1;
            num1=tmp;
        }
        return num1;
    }
};

11、二进制中1的个数 ++

补码,位运算

输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。

题意分析

注意对于负数,右移一位会补 1 而非补零。

CPP Code

// 1. 去掉符号位 1
class Solution {
public:
     int  NumberOf1(int n) {
         int cnt=0;
         if(n<0) {
             n &=0x7fffffff;
             cnt++;
         }
         while(n){
             cnt+=(n&1);
             n>>=1;
         }
         return cnt;
     }
};
// 2. 转为 unsigned int
class Solution {
public:
     int  NumberOf1(int n) {
         unsigned int nn=n;
         int cnt=0;
         while(nn){
             cnt+=(nn&1);
             nn>>=1;
         }
         return cnt;
     }
};
// 3. 每次 n&(n-1) 将从右边起的第一个 1 变为 0
public class Solution {
    public int NumberOf1(int n) {
        int count = 0;
        while(n!= 0){
            count++;
            n = n & (n - 1);
         }
        return count;
    }
} 

29、最小的K个数+++

查找第K大,或各种排序算法

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。

题意分析

用Partition O(n)找到第K大。然后遍历输出前K个数。

  • 检查数据合法情况
  • partition编写
  • 不用IDE的话出现了全角字符、忘记导入包的问题
Java Code

import java.util.Arrays;
import java.util.ArrayList;
public class Solution {
    public ArrayList GetLeastNumbers_Solution(int [] input, int k) {
        ArrayList ans=new ArrayList<>();
        if(input==null|| k==0 || k>input.length) return ans;
        int x=k+1,st=0,ed=input.length-1;
        do{
            x=Partition(input,st,ed);
            if(xk-1){ed=x-1;}
        }while(x!=k-1);
        //Arrays.sort(input,0,k);
        for(int i=0;i < k;i++){
            ans.add(input[i]);
        }
        return ans;
    }
    private int Partition(int[] arr,int st,int ed){//[, ]
        int pivot=arr[st];
        int i=st,j=ed;
        while(i < j){
            while(j > i && arr[j] >= pivot)j--;
            arr[i]=arr[j];
            while(i < j && arr[i] <= pivot)i++;
            arr[j]=arr[i];
        }
        arr[i]=pivot;
        return i;
    }
}

31、从1到n整数中1出现的次数++++

思维

题目描述

求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数(从1 到 n 中1出现的次数)。

题意分析

将n的各个位分为两类:个位与其它位。
对个位来说:

  • 若个位大于0,1出现的次数为round*1+1
  • 若个位等于0,1出现的次数为round*1

对其它位来说,记每一位的权值为base,位值为weight,该位之前的数是former,举例如图:
这里写图片描述

则:

  • weight为0,则1出现次数为round*base
  • weight为1,则1出现次数为round*base+former+1
  • weight大于1,则1出现次数为rount*base+base

比如:

534 = (个位1出现次数)+(十位1出现次数)+(百位1出现次数)
	=(53*1+1)+(5*10+10)+(0*100+100)= 214
530 = (53*1)+(5*10+10)+(0*100+100) = 213
504 = (50*1+1)+(5*10)+(0*100+100) = 201
514 = (51*1+1)+(5*10+4+1)+(0*100+100) = 207
10 = (1*1)+(0*10+0+1) = 2

————————————————
版权声明:本文为CSDN博主「yi_afly」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yi_afly/article/details/52012593

Java Code

public class Solution {
    public int NumberOf1Between1AndN_Solution(int n) {
        int base=1,round=n,weight,former;
        int cnt=0;
        while(base <= n){
            weight=round%10;
            round=round/10;
            cnt+=round*base;
            former=n%base;
            if(weight==1)    cnt+=former+1;
            else if(weight > 1)cnt+=base;
            base*=10;
        }
        return cnt;
    }
}

33、丑数 +

思维

把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。

题意分析

根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此,我们可以创建一个数组,里面保存的是排好序的丑数,每一个丑数都可以由前面的丑数乘以2、3或者5得到。

问题在于,如何保证生成的丑书序列是有序的。解决方法是,维护3个“指针”,分别指向2、3、5当前要乘的数,然后取三个乘积中的最小加入丑数序列,同时,维护指针所指位置。要注意的是,为了避免重复,如果出现minn==2*num[p2]==5*nums[p5]的情况,那么两个指针都需要后移。

  • 细节 - 重复不计
Java Code

import java.util.ArrayList;
public class Solution {
    public int GetUglyNumber_Solution(int index) {
        if (index <= 0) return 0;
        int cnt = 0;
        ArrayList nums = new ArrayList<>();
        nums.add(1);
        int p2 = 0, p3 = 0, p5 = 0;
        while (cnt < index) {
            int x = Math.min(2 * nums.get(p2), Math.min(3 * nums.get(p3), 5 * nums.get(p5)));
            nums.add(x);
            cnt++;
            if (x == 2 * nums.get(p2)) p2++;
            if (x == 3 * nums.get(p3)) p3++;// 不是else if
            if (x == 5 * nums.get(p5)) p5++;
        }
        return nums.get(index - 1);
    }
}

41、和为S的连续正数序列

滑动窗口,双指针

题目描述

小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列? Good Luck!

输出描述:

输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序

题意分析

n从1开始递增,长度从sum开始递减,检查是否满足序列和为sum。

  • 审题 - 序列长大于1
Java Code

import java.util.ArrayList;
public class Solution {
    public ArrayList> FindContinuousSequence(int sum) {
        ArrayList> ans = new ArrayList<>();
        ArrayList cur;
        if (sum <= 0) return ans;
        int n = 1, l = sum;
        while (n <= sum && l > 1) {
            while ((n + n + l - 1) * l / 2 > sum) l--;
            if (l > 1 && (n + n + l - 1) * l / 2 == sum) {
                cur = new ArrayList<>();
                for (int i = n; i < n + l; i++) cur.add(i);
                ans.add(cur);
            }
            n++;
        }
        return ans;
    }
}

42、和为S的两个数字

滑动窗口,双指针

题目描述

输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。

输出描述:

对应每个测试案例,输出两个数,小的先输出。

题意分析

和上题类似的滑动窗口,双指针。

Java Code

import java.util.ArrayList;
public class Solution {
    public ArrayList FindNumbersWithSum(int[] array, int sum) {
        ArrayList ans = new ArrayList<>();
        if (array == null || array.length < 2 || sum < array[0])
            return ans;
        int p1 = 0, p2 = array.length - 1;
        while (p1 < p2) {
            while (array[p2] + array[p1] > sum && p1 < p2) p2--;
            if (p1 < p2 && array[p2] + array[p1] == sum) {
                ans.add(array[p1]);
                ans.add(array[p2]);
                return ans;
            }
            p1++;
        }
        return ans;
    }
}

45、扑克牌顺子

多种情况判断

题目描述

LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张_)...他随机从中抽出了5张牌,想测测自己的手气,看看能不能抽到顺子,如果抽到的话,他决定去买体育彩票,嘿嘿!!“红心A,黑桃3,小王,大王,方片5”,“Oh My God!”不是顺子.....LL不高兴了,他想了想,决定大\小 王可以看成任何数字,并且A看作1,J为11,Q为12,K为13。上面的5张牌就可以变成“1,2,3,4,5”(大小王分别看作2和4),“So Lucky!”。LL决定去买体育彩票啦。 现在,要求你使用这幅牌模拟上面的过程,然后告诉我们LL的运气如何, 如果牌能组成顺子就输出true,否则就输出false。为了方便起见,你可以认为大小王是0。

题意分析

有四张王一定为顺子,其余情况下,一副牌为顺子当且仅当最大数字牌和最小数字牌之差小于5且没有重复的数字牌。

  • 输入数据检查
  • 数组边界
Java Code

import java.util.Arrays;
public class Solution {
    public boolean isContinuous(int[] numbers) {
        if (numbers == null || numbers.length != 5) return false;
        Arrays.sort(numbers);
        int minn = 0, maxx = numbers[numbers.length - 1];
        int loc = -1;
        for (int i = 0; i < numbers.length; i++) {
            if (numbers[i] > 0) {
                loc = i;
                minn = numbers[i];
                break;
            }
        }
        if (loc == numbers.length - 1) return true;// 4 king
        if (maxx - minn + 1 > 5) return false;
        for (int i = loc; i + 1 < numbers.length; i++) {
            if (numbers[i] == numbers[i + 1])
                return false;
        }
        return true;
    }
}

46、圆圈中最后剩下的数+++

约瑟夫环,数学

题目描述

每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0...m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)

如果没有小朋友,请返回-1

题意分析

用模拟来做自然是可以的。但复杂度是O(n*m)。看了一下别人的数学推导思路。

原问题是从0...n-1中循环去掉第m个数,求剩下的最后一个数是多少,我们假设原求解问题是f(n,m)

去掉第一个数k=(m-1)%n之后,还剩下k+1...n-1,0...k-1n-1个数,问题变成了从这n-1个数中循环删去第m个数,求最后剩下的一个数,记这个问题为f'(n-1,m)。那么f(n,m)f'(n-1,m)最终得到的结果是相同的,即f(n,m)=f'(n-1,m)

而如果把k+1...n-1,0...k-10..n-1作置换,那么f'(n-1,m)=(f(n-1,m)+k+1)%n,①②式联合,得到f(n,m)=(f(n-1,m)+k+1)%n。于是递归关系就找到了,这样计算的时间复杂度是O(n)。

最后注意递归的出口,见代码。

Java Code

public class Solution {
    public int LastRemaining_Solution(int n, int m) {
        if (n == 0) return -1;
        if (n == 1) return 0;
        return (LastRemaining_Solution(n - 1, m) + m) % n;
    }
}

63、数据流中的中位数+++

妙用堆,PriorityQueue

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

题意分析

gzshan的分析很清晰。

方法五:最大堆和最小堆。我们注意到当数据保存到容器中时,可以分为两部分,左边一部分的数据要比右边一部分的数据小。如下图所示,P1是左边最大的数,P2是右边最小的数,即使左右两部分数据不是有序的,我们也有一个结论就是:左边最大的数小于右边最小的数

img

因此,我们可以有如下的思路:向堆中插入一个数据的时间是O(logn),而中位数就是堆顶的数据,只需要O(1)的时间就可得到。

而在具体实现上,首先要保证数据平均分配到两个堆中,两个堆中的数据数目之差不超过1,为了实现平均分配,可以在数据的总数目是偶数时,将数据插入最小堆,否则插入最大堆。

此外,还要保证所有最大堆中的数据要小于最小堆中的数据。所以,新传入的数据要和最大堆中最大值或者最小堆中的最小值比较。当总数目是偶数时,我们会插入最小堆,但是在这之前,我们需要判断这个数据和最大堆中的最大值哪个更大,如果最大值中的最大值比较大,那么将这个数据插入最大堆,并把最大堆中的最大值弹出插入最小堆。由于最终插入到最小堆的是原最大堆中最大的,所以保证了最小堆中所有的数据都大于最大堆中的数据。

Java Code

import java.util.Comparator;
import java.util.PriorityQueue;
public class Solution {
    PriorityQueue minQ = new PriorityQueue<>();// default
    PriorityQueue maxQ = new PriorityQueue<>(new Comparator() {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o2 - o1;
        }
    });
    int cnt = 0;
    public void Insert(Integer num) {
        cnt++;
        if ((cnt & 1) == 1) {
            int candidate = num + 1;
            if (!minQ.isEmpty()) candidate = minQ.peek();
            if (num <= candidate) maxQ.add(num);
            else {
                maxQ.offer(candidate);
                minQ.poll();
                minQ.offer(num);
            }
        } else {
            int candidate = num - 1;
            if (!maxQ.isEmpty()) candidate = maxQ.peek();
            if (num >= candidate) minQ.offer(num);
            else {
                minQ.offer(candidate);
                maxQ.poll();
                maxQ.offer(num);
            }
        }
    }
    public Double GetMedian() {
        if ((cnt & 1) == 1) return (double) maxQ.peek();
        else return (minQ.peek() + maxQ.peek()) / 2.0;
    }
}

64、滑动窗口的最大值+++

模拟,滑动窗口,双端队列

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

题意分析

用双端队列,维护队首元素为当前窗口的最大值的下标,队中元素为后续窗口可能的最大值的下标。具体为,每次后移一格成为新的滑动窗口时,【如果队首过期,那么将队首删去】,【如果删掉队列中所有比新元素小的元素】,【再将新元素下标加入】,此时,队首值就是当前窗口的最大值下标。

第一个操作保证及时删掉了过期的最大值。第二个操作保证了队列中都是可能为最大值的元素下标,及时剔除了不可能为最大值的元素。第三个操作是由于随着窗口后移,新的元素可能成为最大元素。

举例

img

Java Code

import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
public class Solution {
    public ArrayList maxInWindows(int[] num, int size) {
        ArrayList ans = new ArrayList<>();
        if (num == null || num.length == 0 || size <= 0 || size > num.length)
            return ans;
        Deque dq = new LinkedList<>();// 存的是下标
        for (int i = 0; i < size - 1; i++) {// 前size-1个
            while (!dq.isEmpty() && num[dq.peekLast()] < num[i]) 
                dq.pollLast();
            dq.offerLast(i);
        }
        for (int i = size - 1; i < num.length; i++) {
            if (!dq.isEmpty() && i - dq.peekFirst() >= size) dq.pollFirst();
            while (!dq.isEmpty() && num[dq.peekLast()] < num[i]) 
                dq.pollLast();
            dq.offerLast(i);
            ans.add(num[dq.peekFirst()]);
        }
        return ans;
    }
}

67、剪绳子+++

贪心,动态规划

题目描述

给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

题意分析

方法一 贪心。尽可能分成3*3*3*..*32*3*3*...*32*2*3*...*3。因为2*2*2<3*3

方法二 动态规划。dp[i]定义为,长度为i的绳子,分割或者不分割,得到的最大乘积。

Java Code

public class Solution {
    public int cutRope(int target) {
        int[] dp = new int[60 + 5];
        dp[0] = dp[1] = 0;
        dp[2] = 1;
        dp[3] = 2;
        dp[4] = 4;
        if (target <= 4) return dp[target];
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 3;
        for (int i = 5; i <= target; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = Math.max(dp[i], dp[j] * dp[i - j]);
            }
        }
        return dp[target];
    }
}
posted @ 2019-11-05 16:40  武藏小次郎  阅读(313)  评论(0编辑  收藏  举报