题解 CF 1372 B
题目
题意
给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b)\) 最小。
思路
前言
如果你没有到现场,你永远也不会体验到cf 的 OI
赛制有多强,评测队列曾超过15min
,不得不让此次比赛unrated
。
但是,我也不知道怎么B、C题提交把语言选成了:C11
,然后在20分钟后完美地CE
了。
声明
lcm : 最小公倍数
minn : n 的最小质因数
mul : n 的最大 \(\neq n\) 的约数
分析
我们首先找出使 \(\operatorname{lcm}(a,b)\) 最小的 \(a\),\(b\)。
\(\because \operatorname{lcm}(a,b)=\frac{a\times b}{\gcd(a,b)}\) ,
\(\therefore\) 我们可以找到 \(n\) 最小的质因数 \(minn\) ,再找到 \(n\) 最大的约数(\(\neq n\))\(mul=\frac{n}{minn}\)。
-
当 \(n\) 为合数时,我们令答案为 \(mul\) , \((minn-1)\times mul\)。
-
当 \(n\) 为质数时,我们令答案为 \(1\) , \(n-1\)。
输出即可。
正确性
证1
证:当 \(n\) 为质数, \(k_1=1\) 时 ,\(\operatorname{lcm}(k_1,n-k_1)\) 最小
首先,设 \(k_1 > 0\),\(k_2=n-k_1\),且\(k_1<k_2\)。
\(\because\) \(n\) 为质数,\(\gcd(k_1,k_2) = 1\),
\(\therefore\) \(\operatorname{lcm}(k_1,k_2)=k_1\times (n-k_1)\)
当 \(k_1 = 1\) ,\(\operatorname{lcm}(k_1,k_2)=n-1\)
若 \(k_1 = 1 + h\)(\(1\leq h\leq \frac{n}{2}\)) ,则
\(\operatorname{lcm}(k_1,k_2)=(1+h)\times (n-1-h) = n - 1 +h \times (n-2-h) > n - 1\)
\(\therefore\) 当 \(n\) 为质数时,\(\operatorname{lcm}(1,n-1)\) 最小。
当然也可以表述为:当 \(n\) 为质数, \(a=1\) 时 ,\(a\times (n-a)\) 最小
类似地,我们也可证明: \(a=1\) 时 ,\(a\times (n-a)\) 最小
我们已经证明了情况2
。
证2
证:当 \(n\) 为合数, \(k_1=mul\) 时,\(\operatorname{lcm}(k_1,n-k_1)\) 最小
首先,设 \(k_1 > 0\),\(k_2=n-k_1\),且\(k_1<k_2\) , \(q = \gcd(k_1,k_2) > 1\)。
令 \(n=g \times q\) , \(k_1=g_1 \times q\) ,\(k_2 = g_2\times q\) , \(g_1+g_2 =g\)
\(\operatorname{lcm}(k_1,n-k_2)=\frac{k_1 \times (n-k_1)}{q} = g_1\times q \times g_2\)
\(\therefore\) 当 \(g_1=1\) , \(g_1\times g_2\) 最小,
\(\therefore \operatorname{lcm}(k_1,n-k_2)=g_1\times q \times g_2 \geq (g-1)\times q =n - q\) (仅当 \(k_1 = q\) 等号成立)
我们再让 \(q\) 取最大为 \(mul\) 即可让\(\operatorname{lcm}(k_1,n-k_2)\) 最小 ,此时 \(k_1=mul\)
证明完毕(如有漏洞请轻喷)
算法
先用线性筛筛出1e5
以内素数,方便找答案。
再一个个枚举素数,找到最小的质因子(如果有),判断情况(如果找不到 \(n\) 就肯定是素数),输出答案。
代码
/*
* Author :Werner_Yin
* Time: 2020-07-11 23:20:15
* I believe I can AC !
*/
#include <bits/stdc++.h>
#define lol long long
#define GDB(x) cout<<"DATA "<<#x<<" :"<<x<<endl;
#define mes(x) memset(x,0,sizeof(x))
using namespace std;
template <typename T>
void re(T &x){
#define ge getchar()
x = 0;int sgn = 1;char ch = ge;
for(;!isdigit(ch);ch = ge) if(ch == '-') sgn = -1;
for(;isdigit(ch);ch = ge) x = (x<<1)+(x<<3)+(ch^48);
x *= sgn;
}
template <typename T>
void write(T x){
if(x == 0) putchar(48);
else if(x < 0) putchar('-');
int k = 0,que[20];
while(x > 0){
que[++k]=x % 10;
x /= 10;
}
for(int i = k;i > 0;i--) putchar(que[i] + 48);
return;
}
const int MAXN = 1e5 + 10;
int PrimeNum = 0,Prime[MAXN];
bool IsNotPrime[MAXN];
void shai (){
for(int i = 2;i < MAXN;i++){
if(!IsNotPrime[i]){
Prime[PrimeNum++] = i;
}
for(int j = 0;j < PrimeNum && Prime[j] * i < MAXN;j++){
IsNotPrime[Prime[j] * i] = 1;
if(i % Prime[j])break;
}
}
}
int main (){
shai();
int T;
re(T);
while(T--){
int n;
re(n);
int minn = -1;
for(int i = 0;i < PrimeNum ;i++){
if(n % Prime[i] == 0){
minn = Prime[i];
break;
}
}
int mul = n / minn;
if(minn == -1||mul == 1) {write(1);write(n-1);}
else{write ( 1 * mul);write( (minn-1)*mul);}
putchar('\n');
}
return 0;
}