Java 多线程编程
Java 多线程编程
Java 给多线程编程提供了内置的支持。 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
多线程是多任务的一种特别的形式,但多线程使用了更小的资源开销。
这里定义和线程相关的另一个术语 - 进程:一个进程包括由操作系统分配的内存空间,包含一个或多个线程。一个线程不能独立的存在,它必须是进程的一部分。一个进程一直运行,直到所有的非守护线程都结束运行后才能结束。
多线程能满足程序员编写高效率的程序来达到充分利用 CPU 的目的。
一个线程的生命周期
线程是一个动态执行的过程,它也有一个从产生到死亡的过程。
下图显示了一个线程完整的生命周期。
-
新建状态:
使用 new 关键字和 Thread 类或其子类建立一个线程对象后,该线程对象就处于新建状态。它保持这个状态直到程序 start() 这个线程。
-
就绪状态:
当线程对象调用了start()方法之后,该线程就进入就绪状态。就绪状态的线程处于就绪队列中,要等待JVM里线程调度器的调度。
-
运行状态:
如果就绪状态的线程获取 CPU 资源,就可以执行 run(),此时线程便处于运行状态。处于运行状态的线程最为复杂,它可以变为阻塞状态、就绪状态和死亡状态。
-
阻塞状态:
如果一个线程执行了sleep(睡眠)、suspend(挂起)等方法,失去所占用资源之后,该线程就从运行状态进入阻塞状态。在睡眠时间已到或获得设备资源后可以重新进入就绪状态。可以分为三种:
- 等待阻塞:运行状态中的线程执行 wait() 方法,使线程进入到等待阻塞状态。
- 同步阻塞:线程在获取 synchronized 同步锁失败(因为同步锁被其他线程占用)。
- 其他阻塞:通过调用线程的 sleep() 或 join() 发出了 I/O 请求时,线程就会进入到阻塞状态。当sleep() 状态超时,join() 等待线程终止或超时,或者 I/O 处理完毕,线程重新转入就绪状态。
-
死亡状态:
一个运行状态的线程完成任务或者其他终止条件发生时,该线程就切换到终止状态。
线程的优先级
每一个 Java 线程都有一个优先级,这样有助于操作系统确定线程的调度顺序。
Java 线程的优先级是一个整数,其取值范围是 1 (Thread.MIN_PRIORITY ) - 10 (Thread.MAX_PRIORITY )。
默认情况下,每一个线程都会分配一个优先级 NORM_PRIORITY(5)。
具有较高优先级的线程对程序更重要,并且应该在低优先级的线程之前分配处理器资源。但是,线程优先级不能保证线程执行的顺序,而且非常依赖于平台。
创建一个线程
Java 提供了三种创建线程的方法:
- 通过实现 Runnable 接口;
- 通过继承 Thread 类本身;
- 通过 Callable 和 Future 创建线程。
通过实现 Runnable 接口来创建线程
创建一个线程,最简单的方法是创建一个实现 Runnable 接口的类。
为了实现 Runnable,一个类只需要执行一个方法调用 run(),声明如下:
public void run()
你可以重写该方法,重要的是理解的 run() 可以调用其他方法,使用其他类,并声明变量,就像主线程一样。
在创建一个实现 Runnable 接口的类之后,你可以在类中实例化一个线程对象。
Thread 定义了几个构造方法,下面的这个是我们经常使用的:
Thread(Runnable threadOb,String threadName);
这里,threadOb 是一个实现 Runnable 接口的类的实例,并且 threadName 指定新线程的名字。
新线程创建之后,你调用它的 start() 方法它才会运行。
void start();
下面是一个创建线程并开始让它执行的实例:
实例
class RunnableDemo implements Runnable { private Thread t; private String threadName; RunnableDemo( String name) { threadName = name; System.out.println("Creating " + threadName ); } public void run() { System.out.println("Running " + threadName ); try { for(int i = 4; i > 0; i--) { System.out.println("Thread: " + threadName + ", " + i); // 让线程睡眠一会 Thread.sleep(50); } }catch (InterruptedException e) { System.out.println("Thread " + threadName + " interrupted."); } System.out.println("Thread " + threadName + " exiting."); } public void start () { System.out.println("Starting " + threadName ); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { RunnableDemo R1 = new RunnableDemo( "Thread-1"); R1.start(); RunnableDemo R2 = new RunnableDemo( "Thread-2"); R2.start(); } }
编译以上程序运行结果如下:
Creating Thread-1
Starting Thread-1
Creating Thread-2
Starting Thread-2
Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2, 4
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.
通过继承Thread来创建线程
创建一个线程的第二种方法是创建一个新的类,该类继承 Thread 类,然后创建一个该类的实例。
继承类必须重写 run() 方法,该方法是新线程的入口点。它也必须调用 start() 方法才能执行。
该方法尽管被列为一种多线程实现方式,但是本质上也是实现了 Runnable 接口的一个实例。
实例
class ThreadDemo extends Thread { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; System.out.println("Creating " + threadName ); } public void run() { System.out.println("Running " + threadName ); try { for(int i = 4; i > 0; i--) { System.out.println("Thread: " + threadName + ", " + i); // 让线程睡眠一会 Thread.sleep(50); } }catch (InterruptedException e) { System.out.println("Thread " + threadName + " interrupted."); } System.out.println("Thread " + threadName + " exiting."); } public void start () { System.out.println("Starting " + threadName ); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo T1 = new ThreadDemo( "Thread-1"); T1.start(); ThreadDemo T2 = new ThreadDemo( "Thread-2"); T2.start(); } }
编译以上程序运行结果如下:
Creating Thread-1
Starting Thread-1
Creating Thread-2
Starting Thread-2
Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2, 4
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.
Thread 方法
下表列出了Thread类的一些重要方法:
序号 | 方法描述 |
---|---|
1 | public void start() 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。 |
2 | public void run() 如果该线程是使用独立的 Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法;否则,该方法不执行任何操作并返回。 |
3 | public final void setName(String name) 改变线程名称,使之与参数 name 相同。 |
4 | public final void setPriority(int priority) 更改线程的优先级。 |
5 | public final void setDaemon(boolean on) 将该线程标记为守护线程或用户线程。 |
6 | public final void join(long millisec) 等待该线程终止的时间最长为 millis 毫秒。 |
7 | public void interrupt() 中断线程。 |
8 | public final boolean isAlive() 测试线程是否处于活动状态。 |
上述方法是被 Thread 对象调用的,下面表格的方法是 Thread 类的静态方法。
序号 | 方法描述 |
---|---|
1 | public static void yield() 暂停当前正在执行的线程对象,并执行其他线程。 |
2 | public static void sleep(long millisec) 在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操作受到系统计时器和调度程序精度和准确性的影响。 |
3 | public static boolean holdsLock(Object x) 当且仅当当前线程在指定的对象上保持监视器锁时,才返回 true。 |
4 | public static Thread currentThread() 返回对当前正在执行的线程对象的引用。 |
5 | public static void dumpStack() 将当前线程的堆栈跟踪打印至标准错误流。 |
实例
如下的ThreadClassDemo 程序演示了Thread类的一些方法:
DisplayMessage.java 文件代码:
// 文件名 : DisplayMessage.java // 通过实现 Runnable 接口创建线程 public class DisplayMessage implements Runnable { private String message; public DisplayMessage(String message) { this.message = message; } public void run() { while(true) { System.out.println(message); } } }
GuessANumber.java 文件代码:
// 文件名 : GuessANumber.java // 通过继承 Thread 类创建线程 public class GuessANumber extends Thread { private int number; public GuessANumber(int number) { this.number = number; } public void run() { int counter = 0; int guess = 0; do { guess = (int) (Math.random() * 100 + 1); System.out.println(this.getName() + " guesses " + guess); counter++; } while(guess != number); System.out.println("** Correct!" + this.getName() + "in" + counter + "guesses.**"); } }
ThreadClassDemo.java 文件代码:
// 文件名 : ThreadClassDemo.java public class ThreadClassDemo { public static void main(String [] args) { Runnable hello = new DisplayMessage("Hello"); Thread thread1 = new Thread(hello); thread1.setDaemon(true); thread1.setName("hello"); System.out.println("Starting hello thread..."); thread1.start(); Runnable bye = new DisplayMessage("Goodbye"); Thread thread2 = new Thread(bye); thread2.setPriority(Thread.MIN_PRIORITY); thread2.setDaemon(true); System.out.println("Starting goodbye thread..."); thread2.start(); System.out.println("Starting thread3..."); Thread thread3 = new GuessANumber(27); thread3.start(); try { thread3.join(); }catch(InterruptedException e) { System.out.println("Thread interrupted."); } System.out.println("Starting thread4..."); Thread thread4 = new GuessANumber(75); thread4.start(); System.out.println("main() is ending..."); } }
运行结果如下,每一次运行的结果都不一样。
Starting hello thread...
Starting goodbye thread...
Hello
Hello
Hello
Hello
Hello
Hello
Goodbye
Goodbye
Goodbye
Goodbye
Goodbye
.......
通过 Callable 和 Future 创建线程
- \1. 创建 Callable 接口的实现类,并实现 call() 方法,该 call() 方法将作为线程执行体,并且有返回值。
- \2. 创建 Callable 实现类的实例,使用 FutureTask 类来包装 Callable 对象,该 FutureTask 对象封装了该 Callable 对象的 call() 方法的返回值。
- \3. 使用 FutureTask 对象作为 Thread 对象的 target 创建并启动新线程。
- \4. 调用 FutureTask 对象的 get() 方法来获得子线程执行结束后的返回值。
实例
public class CallableThreadTest implements Callable
创建线程的三种方式的对比
- \1. 采用实现 Runnable、Callable 接口的方式创建多线程时,线程类只是实现了 Runnable 接口或 Callable 接口,还可以继承其他类。
- \2. 使用继承 Thread 类的方式创建多线程时,编写简单,如果需要访问当前线程,则无需使用 Thread.currentThread() 方法,直接使用 this 即可获得当前线程。
线程的几个主要概念
在多线程编程时,你需要了解以下几个概念:
- 线程同步
- 线程间通信
- 线程死锁
- 线程控制:挂起、停止和恢复
多线程的使用
有效利用多线程的关键是理解程序是并发执行而不是串行执行的。例如:程序中有两个子系统需要并发执行,这时候就需要利用多线程编程。
通过对多线程的使用,可以编写出非常高效的程序。不过请注意,如果你创建太多的线程,程序执行的效率实际上是降低了,而不是提升了。
请记住,上下文的切换开销也很重要,如果你创建了太多的线程,CPU 花费在上下文的切换的时间将多于执行程序的时间!
8 篇笔记 写笔记
dg5uw
159***75112@139.com
113
线程池
1、线程池,其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。(是什么)
2、那么,我们为什么需要用到线程池呢?每次用的时候手动创建不行吗?
在java中,如果每个请求到达就创建一个新线程,开销是相当大的。在实际使用中,创建和销毁线程花费的时间和消耗的系统资源都相当大,甚至可能要比在处理实际的用户请求的时间和资源要多的多。除了创建和销毁线程的开销之外,活动的线程也需要消耗系统资源。如果在一个jvm里创建太多的线程,可能会使系统由于过度消耗内存或“切换过度”而导致系统资源不足。为了防止资源不足,需要采取一些办法来限制任何给定时刻处理的请求数目,尽可能减少创建和销毁线程的次数,特别是一些资源耗费比较大的线程的创建和销毁,尽量利用已有对象来进行服务。(为什么)
线程池主要用来解决线程生命周期开销问题和资源不足问题。通过对多个任务重复使用线程,线程创建的开销就被分摊到了多个任务上了,而且由于在请求到达时线程已经存在,所以消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使用应用程序响应更快;另外,通过适当的调整线程中的线程数目可以防止出现资源不足的情况。(什么用)
3、线程池都是通过线程池工厂创建,再调用线程池中的方法获取线程,再通过线程去执行任务方法。
- Executors:线程池创建工厂类
- public static ExecutorServicenewFixedThreadPool(int nThreads):返回线程池对象
- ExecutorService:线程池类
- Future<?> submit(Runnable task):获取线程池中的某一个线程对象,并执行
- Future 接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用
4、这里介绍两种使用线程池创建线程的方法
1):使用Runnable接口创建线程池
使用线程池中线程对象的步骤:
- 1、创建线程池对象
- 2、创建 Runnable 接口子类对象
- 3、提交 Runnable 接口子类对象
- 4、关闭线程池
Test.java 代码如下:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Test {
public static void main(String[] args) {
//创建线程池对象 参数5,代表有5个线程的线程池
ExecutorService service = Executors.newFixedThreadPool(5);
//创建Runnable线程任务对象
TaskRunnable task = new TaskRunnable();
//从线程池中获取线程对象
service.submit(task);
System.out.println("----------------------");
//再获取一个线程对象
service.submit(task);
//关闭线程池
service.shutdown();
}
}
TaskRunnable.java 接口文件如下:
public class TaskRunnable implements Runnable{
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("自定义线程任务在执行"+i);
}
}
}
2)使用Callable接口创建线程池
Callable接口:与Runnable接口功能相似,用来指定线程的任务。其中的call()方法,用来返回线程任务执行完毕后的结果,call方法可抛出异常。
ExecutorService:线程池类
Future 接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用
使用线程池中线程对象的步骤:
- 1、创建线程池对象
- 2、创建 Callable 接口子类对象
- 3、提交 Callable 接口子类对象
- 4、关闭线程池
Test.java 代码如下:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Test{
public static void main(String[] args) {
ExecutorService service = Executors.newFixedThreadPool(3);
TaskCallable c = new TaskCallable();
//线程池中获取线程对象,调用run方法
service.submit(c);
//再获取一个
service.submit(c);
//关闭线程池
service.shutdown();
}
}
TaskCallable.java 接口文件如下:
import java.util.concurrent.Callable;
public class TaskCallable implements Callable<Object>{
@Override
public Object call() throws Exception {
for (int i = 0; i < 1000; i++) {
System.out.println("自定义线程任务在执行"+i);
}
return null;
}
}
[dg5uw](javascript:😉 dg5uw 159***75112@139.com4年前 (2018-03-05)
dg5uw
159***75112@139.com
22
线程池练习:返回两个数相加的结果
要求:通过线程池中的线程对象,使用Callable接口完成两个数求和操作
Future 接口:用来记录线程任务执行完毕后产生的结果。
线程池创建与使用:get() 获取 Future对象中封装的数据结果
ThreadPoolDemo.java 文件代码如下:
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class ThreadPoolDemo {
public static void main(String[] args) throws InterruptedException, ExecutionException {
//创建线程池对象
ExecutorService threadPool = Executors.newFixedThreadPool(2);
//创建一个Callable接口子类对象
//MyCallable c = new MyCallable();
MyCallable c = new MyCallable(100, 200);
MyCallable c2 = new MyCallable(10, 20);
//获取线程池中的线程,调用Callable接口子类对象中的call()方法, 完成求和操作
//<Integer> Future<Integer> submit(Callable<Integer> task)
// Future 结果对象
Future<Integer> result = threadPool.submit(c);
//此 Future 的 get 方法所返回的结果类型
Integer sum = result.get();
System.out.println("sum=" + sum);
//再演示
result = threadPool.submit(c2);
sum = result.get();
System.out.println("sum=" + sum);
//关闭线程池(可以不关闭)
}
}
MyCallable.java 接口文件代码如下:
import java.util.concurrent.Callable;
public class MyCallable implements Callable<Integer> {
//成员变量
int x = 5;
int y = 3;
//构造方法
public MyCallable(){
}
public MyCallable(int x, int y){
this.x = x;
this.y = y;
}
@Override
public Integer call() throws Exception {
return x+y;
}
}
[dg5uw](javascript:😉 dg5uw 159***75112@139.com4年前 (2018-03-05)
0℃space
960***125@qq.com
21
进程和线程的区别
进程
应用程序的执行实例,有独立的内存空间和系统资源
线程
CPU调度和分派的基本单位,进程中执行运算的最小单位,可完成一个独立的顺序控制流程
进程和线程的关系
(1)一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程是操作系统可识别的最小执行和调度单位。
(2)资源分配给进程,同一进程的所有线程共享该进程的所有资源。 同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。
(3)处理机分给线程,即真正在处理机上运行的是线程。
(4)线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。
[0℃space](javascript:😉 0℃space 960***125@qq.com4年前 (2018-03-23)
阿颖
553***793@qq.com
[ 参考地址](https://blog.csdn.net/xuxurui007/article/details/7685076)
26
Java Thread 中 run() 与 start() 的区别
Java 的线程是通过 java.lang.Thread 类来实现的。VM 启动时会有一个由主方法所定义的线程。可以通过创建 Thread 的实例来创建新的线程。每个线程都是通过某个特定 Thread 对象所对应的方法 run() 来完成其操作的,方法 run() 称为线程体。通过调用 Thread 类的 start() 方法来启动一个线程。
在 Java 当中,线程通常都有五种状态,创建、就绪、运行、阻塞和死亡。
- 第一是创建状态。在生成线程对象,并没有调用该对象的 start 方法,这是线程处于创建状态。
- 第二是就绪状态。当调用了线程对象的 start 方法之后,该线程就进入了就绪状态,但是此时线程调度程序还没有把该线程设置为当前线程,此时处于就绪状态。在线程运行之后,从等待或者睡眠中回来之后,也会处于就绪状态。
- 第三是运行状态。线程调度程序将处于就绪状态的线程设置为当前线程,此时线程就进入了运行状态,开始运行 run 函数当中的代码。
- 第四是阻塞状态。线程正在运行的时候,被暂停,通常是为了等待某个时间的发生(比如说某项资源就绪)之后再继续运行。sleep,suspend,wait 等方法都可以导致线程阻塞。
- 第五是死亡状态。如果一个线程的 run 方法执行结束或者调用 stop 方法后,该线程就会死亡。对于已经死亡的线程,无法再使用 start 方法令其进入就绪。
实现并启动线程有两种方法
- 1、写一个类继承自 Thread 类,重写 run 方法。用 start 方法启动线程
- 2、写一个类实现 Runnable 接口,实现 run 方法。用 new Thread(Runnable target).start() 方法来启动
多线程原理:相当于玩游戏机,只有一个游戏机(cpu),可是有很多人要玩,于是,start 是排队!等 CPU 选中你就是轮到你,你就 run(),当 CPU 的运行的时间片执行完,这个线程就继续排队,等待下一次的run()。
调用 start() 后,线程会被放到等待队列,等待 CPU 调度,并不一定要马上开始执行,只是将这个线程置于可动行状态。然后通过 JVM,线程 Thread 会调用 run() 方法,执行本线程的线程体。先调用 start 后调用 run,这么麻烦,为了不直接调用 run?就是为了实现多线程的优点,没这个 start 不行。
- 1.start() 方法来启动线程,真正实现了多线程运行。这时无需等待 run 方法体代码执行完毕,可以直接继续执行下面的代码;通过调用 Thread 类的 start() 方法来启动一个线程, 这时此线程是处于就绪状态, 并没有运行。 然后通过此 Thread 类调用方法 run() 来完成其运行操作的, 这里方法 run() 称为线程体,它包含了要执行的这个线程的内容, run 方法运行结束, 此线程终止。然后 CPU 再调度其它线程。
- 2.run() 方法当作普通方法的方式调用。程序还是要顺序执行,要等待 run 方法体执行完毕后,才可继续执行下面的代码; 程序中只有主线程——这一个线程, 其程序执行路径还是只有一条, 这样就没有达到写线程的目的。
记住:多线程就是分时利用 CPU,宏观上让所有线程一起执行 ,也叫并发。
public class Test {
public static void main(String[] args) {
Runner1 runner1 = new Runner1();
Runner2 runner2 = new Runner2();
// Thread(Runnable target) 分配新的 Thread 对象。
Thread thread1 = new Thread(runner1);
Thread thread2 = new Thread(runner2);
// thread1.start();
// thread2.start();
thread1.run();
thread2.run();
}
}
class Runner1 implements Runnable { // 实现了Runnable接口,jdk就知道这个类是一个线程
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("进入Runner1运行状态——————————" + i);
}
}
}
class Runner2 implements Runnable { // 实现了Runnable接口,jdk就知道这个类是一个线程
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("进入Runner2运行状态==========" + i);
}
}
}
阿颖 阿颖 553***793@qq.com 参考地址3年前 (2018-08-13)
HelloWorld
zhy***@qq.com
[ 参考地址](https://www.cnblogs.com/happy-coder/p/6587092.html)
18
线程状态图:
线程共包括以下 5 种状态:
1. 新建状态(New): 线程对象被创建后,就进入了新建状态。例如,Thread thread = new Thread()。
2. 就绪状态(Runnable): 也被称为“可执行状态”。线程对象被创建后,其它线程调用了该对象的start()方法,从而来启动该线程。例如,thread.start()。处于就绪状态的线程,随时可能被CPU调度执行。
3. 运行状态(Running): 线程获取CPU权限进行执行。需要注意的是,线程只能从就绪状态进入到运行状态。
4. 阻塞状态(Blocked): 阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。阻塞的情况分三种:
- (01) 等待阻塞 -- 通过调用线程的wait()方法,让线程等待某工作的完成。
- (02) 同步阻塞 -- 线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态。
- (03) 其他阻塞 -- 通过调用线程的sleep()或join()或发出了I/O请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。
5. 死亡状态(Dead): 线程执行完了或者因异常退出了run()方法,该线程结束生命周期。
HelloWorld HelloWorld zhy***@qq.com 参考地址3年前 (2018-09-04)
cz
109***3594@qq.com
17
线程安全问题
产生原因:多个线程竞争同一资源(访问同一数据),可参考经典的生产者消费者问题。
解决方案:
run 方法内:同步代码块 synchronized {}
Public synchronized 返回值类型 方法名(){} 自动释放对象锁
使用 Lock 锁
Lock 锁需要程序员(在 finally 代码块中)手动释放。
Lock lock=new ReentranttLock() // Reentrant(可重用的)
Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作,是 JDK1.5 之后出现的。
Lock 接口中的方法:
void lock() // 获取锁
void unlock() // 释放锁
Lock 接口的实现类:
java.util.concurrent.locks.ReentrantLock implements Lock
使用步骤:
- 1.在成员位置创建一个 ReentrantLock 对象。
- 2.在可能出现线程安全问题的代码前,调用 Lock 接口中的方法 lock 获取锁对象。
- 3.在可能出现线程安全问题的代码后,调用 Lock 接口中的方法 unlock 释放锁对象。
public class RunnableImpl implements Runnable{
//定义一个共享的票源
private int ticket = 100;
//1.在成员位置创建一个ReentrantLock对象
Lock l = new ReentrantLock();
//设置线程任务:卖票
@Override
public void run() {
//使用死循环,让卖票重复的执行
while(true){
//2.在可能出现线程安全问题的代码前,调用Lock接口中的方法lock获取锁对象
l.lock();
//判断票是否大于0
if(ticket>0){
//为了提高线程安全问题出现的几率,让程序睡眠10毫秒
try {
//可能会产生异常的代码
Thread.sleep(10);
//进行卖票 ticket--
System.out.println(Thread.currentThread().getName()+"正在卖第"+ticket+"张票!");
ticket--;
} catch (InterruptedException e) {
//异常的处理逻辑
e.printStackTrace();
}finally {
//一定会执行的代码,一般用于资源释放(资源回收)
//3.在可能出现线程安全问题的代码后,调用Lock接口中的方法unlock释放锁对象
l.unlock();//无论程序是否有异常,都让锁对象释放掉,节约内存,提高程序的效率
}
}
}
}
}
[cz](javascript:😉 cz 109***3594@qq.com3年前 (2018-11-06)
我v成为v我v成为
201***6216@qq.com
19
用 CompletableFuture 来解决回调的问题。
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CountDownLatch;
public class CompletableFutureDemo {
public static void main(String[] args) throws InterruptedException {
long l = System.currentTimeMillis();
CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> {
System.out.println("执行耗时操作...");
timeConsumingOperation();
return 100;
});
completableFuture.whenComplete((result, e) -> {
System.out.println("结果:" + result);
});
System.out.println("主线程运算耗时:" + (System.currentTimeMillis() - l) + " ms");
new CountDownLatch(1).await();
}
static void timeConsumingOperation() {
try {
Thread.sleep(3000);
} catch (Exception e) {
e.printStackTrace();
}
}
}
控制台输出:
执行耗时操作...
主线程运算耗时:74 ms
结果:100
可以发现耗时操作没有占用主线程的时间片,达到了异步调用的效果。我们也不需要引入任何第三方的依赖,这都是依赖于 java.util.concurrent.CompletableFuture 的出现。CompletableFuture 提供了近 50 多个方法,大大便捷了 java 多线程操作,和异步调用的写法。
[我v成为v我v成为](javascript:😉 我v成为v我v成为 201***6216@qq.com3年前 (2019-06-11)
八云式
139***2520@qq.com
[ 参考地址](https://blog.csdn.net/qq_38293564/article/details/80432875)
16
关于java的多线程,这里补充一下Object类的线程方法。
notify() :通知一个在对象上等待的线程,使其从wait()返回,而返回的前提是该线程获取到了对象的锁。
notifyAll(): 通知所有等待在该对象上的线程。
wait():调用该方法的线程进入WAITING状态,只有等待另外线程的通知或被中断才会返回,需要注意,
调用wait()方法后,会释放对象的锁。
wait(long) :超时等待一段时间,这里的参数是毫秒,也就是等待长达n毫秒,如果没有通知就超时返回。
wait(long, int) : 对于超时时间更细粒度的控制,可以达到毫秒。
[八云式](javascript:😉 八云式 139***2520@qq.com 参考地址2年前 (2020-03-21)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?