hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135
求[L,R]范围内与N互质的数的个数。
分别求[1,L]和[1,R]和n互质的个数,求差。
利用容斥原理求解。
二进制枚举每一种质数的组合,奇加偶减。
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 100005; int fac[N], cnt; void factor(int n) { cnt = 0; int limit = sqrt(n); for (int i = 2; i <= limit; ++i) { if (n % i == 0) fac[cnt++] = i; while (n % i == 0) n /= i; } if (n > 1) fac[cnt++] = n; } ll solve(ll x, int n) { //1~x中与n互质的数 ll ans = 0; ll val; int num; //printf("cnt=%d\n", cnt); int st = 1<<cnt; for (int i = 1; i < st; ++i) {// 枚举所有情况,奇加偶减 val = 1; num = 0; for (int j = 0; j < cnt; ++j) { if (i & (1<<j)) { val *= fac[j]; num++; } } //printf(">>%d %lld %d\n", i, val, num); if (num & 1) ans += x/val; else ans -= x/val; } return x - ans; } int main() { ll x, y; int n; int t, cas=0; cin >> t; while (t--) { cin >> x >> y >> n; cout << "Case #" << ++cas << ": "; factor(n); cout << solve(y,n) - solve(x-1,n) << endl; } return 0; }
Codeforces 547C Mike and Foam
差不多啦
求新加入的数和已经存在的数有多少是不互质的。
#include <iostream> #include <cstring> #include <cstdio> #include <cmath> using namespace std; const int N = 500005; int a[N], vis[N], fac[N], tfac[N]; int n, m, q, tot; void getfactor(int x, int fac[], int &cnt) { int limit = sqrt(x); cnt = 0; for (int i = 2; i <= limit; ++i) { if (x % i == 0) { fac[cnt++] = i; while (x % i == 0) x /= i; } } if (x > 1) fac[cnt++] = x; } int add(int x, int d) { int cnt; getfactor(x, tfac, cnt); int st = 1<<cnt; int ans = 0; for (int i = 1; i < st; ++i) { int num = 0; int tmp = 1; for (int j = 0; j < cnt; ++j) { if (i & (1<<j)) { num++; tmp *= tfac[j]; } } if (d == -1) fac[tmp]--; if (num & 1) ans += fac[tmp]; else ans -= fac[tmp]; if (d == 1) fac[tmp]++; } if (d == -1) return -tot+ans; else return tot-1-ans; } int main() { while (~scanf("%d%d", &n, &m)) { memset(vis, 0, sizeof vis); tot = 0; for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); long long ans = 0 ,tmp; while (m--) { scanf("%d", &q); if (vis[q]) vis[q] = 0, tot--, tmp = add(a[q], -1); else vis[q] = 1, tot++, tmp = add(a[q], 1); ans += tmp; printf("%lld\n", ans); } } return 0; }