CF390-E. Inna and Large Sweet Matrix(区间更新+区间查询)
题意很好理解,不说了
题解就是每次把值压缩成一维,比如x上,这样就可以求出任意宽度的整个竖条的和。
如这张图,求的是s5-(s1+s3+s7+s9)
因为可以求出一整竖条和一整横条,我们可以求出是s2+s5+s8 也可以求出s4+s5+s6 当然也很容易求出总面积S
那么S-(s2+s5+s8)-(s4+s5+s6) = s1+s3+s7+s9-s5
对,答案已经出来了,很简单。
以后看到这种求解公式十分奇怪的题,就要算一算是不是能构造出很简单的公式。
注意这题用cin cout 会超时!因为codeforce是单样例,所以都忘了这点,t了好多次……T^T
区间更新+区间查询,线段树+lazy操作 (514ms
#include <stdio.h> typedef long long ll; const int N = 4000005; ll tx[N<<2], ty[N<<2], fx[N<<2], fy[N<<2]; int yl, yr, yv; #define lson (o<<1) #define rson ((o<<1)+1) void pushdown(ll tr[], ll fg[], int o, int l, int r) { if (fg[o]) { fg[lson] += fg[o]; fg[rson] += fg[o]; int m = (l+r) >> 1; tr[lson] += fg[o] * (m-l+1); tr[rson] += fg[o] * (r-m); fg[o] = 0; } } void add(ll tr[], ll fg[], int o, int l, int r) { if (l == r) { tr[o] += yv; return ; } if (yl <= l && yr >= r) { tr[o] += (ll)yv * (r-l+1); fg[o] += yv; return ; } pushdown(tr, fg, o, l, r); int m = (l+r) >> 1; if (yl <= m) add(tr, fg, lson, l, m); if (yr > m) add(tr, fg, rson, m+1, r); tr[o] = tr[lson] + tr[rson]; } ll query(ll tr[], ll fg[], int o, int l, int r) { if (l >= yl && r <= yr) { return tr[o]; } pushdown(tr, fg, o, l, r); int m = (l+r) >> 1; ll ans = 0; if (m >= yl) ans += query(tr, fg, o<<1, l, m); if (m < yr) ans += query(tr, fg, (o<<1)+1, m+1, r); return ans; } int main() { int n, m, w; scanf("%d%d%d", &n, &m, &w); int op; int x1, x2, y1, y2; ll v; ll tot, ans; while (w--) { scanf("%d%d%d%d%d", &op, &x1, &y1, &x2, &y2); if (op) { yl = 1, yr = n; tot = query(tx, fx, 1, 1, n); ans = 0; yl = x1, yr = x2; ans += query(tx, fx, 1, 1, n); yl = y1, yr = y2; ans += query(ty, fy, 1, 1, m); printf("%lld\n", ans-tot); } else { scanf("%lld", &v); yl = x1, yr = x2, yv = v*(y2-y1+1); add(tx, fx, 1, 1, n); yl = y1, yr = y2, yv = v*(x2-x1+1); add(ty, fy, 1, 1, m); } } return 0; }
顺便学习了一下树状数组的区间操作(202ms 时间空间都优于线段树
#include <stdio.h> typedef long long ll; const int MAXN = 4000005; int lowbit(int x) { return x&-x; } struct tree_array { struct tree_array_single { int N; ll arr[MAXN]; void add(int x, ll v) { while(x <= N) arr[x] += v, x += lowbit(x); } ll sum(int x) { ll sum = 0; while(x) sum+=arr[x], x-=lowbit(x); return sum; } } T1, T2; void add(int x, ll v) { T1.add(x, v); T2.add(x, x*v); } void update(int L, int R, ll v) { add(L, v); add(R+1, -v); } ll sum(int x) { return (x+1)*T1.sum(x)-T2.sum(x); } ll query(int L,int R) { return sum(R)-sum(L-1); } } tx, ty; int main() { //freopen("in.txt", "r", stdin); int n, m, w; scanf("%d%d%d", &n, &m, &w); int op; int x1, x2, y1, y2; ll v; tx.T1.N = tx.T2.N = n; ty.T1.N = ty.T2.N = m; ll tot = 0; while (w--) { scanf("%d%d%d%d%d", &op, &x1, &y1, &x2, &y2); if (op) { ll ans = tx.query(x1, x2) + ty.query(y1, y2); printf("%lld\n", ans-tot); } else { scanf("%lld", &v); tot += (y2-y1+1)*(x2-x1+1)*v; tx.update(x1, x2, v*(y2-y1+1)); ty.update(y1, y2, v*(x2-x1+1)); } } return 0; }