Codeforces Round #341 (Div. 2) ABCDE
http://www.cnblogs.com/wenruo/p/5176375.html
A. Wet Shark and Odd and Even
题意:输入n个数,选择其中任意个数,使和最大且为奇数。
题解:算出所有数的和,如果奇数的个数为奇数个,则减去最小的奇数,否则不用处理。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define PI acos(-1.0) 4 #define EXP exp(1.0) 5 #define ESP 1E-6 6 #define clr(x,c) memset(x,c,sizeof(x)) 7 typedef long long ll; 8 9 using namespace std; 10 int main() 11 { 12 int n; 13 int cnt = 0; int minn = 1000000000; 14 int val; 15 ll ans = 0; 16 scanf("%d", &n); 17 for (int i = 0; i < n; ++i) { 18 scanf("%d", &val);ans += val; 19 if (val % 2 == 1) { 20 cnt++; 21 minn = min(minn, val); 22 } 23 } 24 if (cnt % 2 == 1) ans -= minn; 25 cout << ans; 26 return 0; 27 }
B. Wet Shark and Bishops
题意:一个1000*1000的棋盘,上面摆放n个棋子,同一对角线上的两个棋子可以相互攻击,求一共有多少对棋子可以相互攻击。
题解:有主对角线和副对角线,对于每一个对角线,设对角线上有棋子X个,则该对角线有C(X,2)对棋子可以相互攻击。
#include <bits/stdc++.h> #define PI acos(-1.0) #define EXP exp(1.0) #define ESP 1E-6 #define clr(x,c) memset(x,c,sizeof(x)) typedef long long ll; using namespace std; int xSubY[2005]; int xAddY[2005]; ll c[1005][1005]; //c[i][j] := C(i, j) void init() { c[0][0] = 1; for(int i = 1; i <= 1000; i++) { c[i][0] = 1; c[i][i] = 1; for(int j = 1; j < i; j++) c[i][j] = (c[i-1][j-1] + c[i-1][j]); } } int main() { init(); int n; int x, y; scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d%d", &x, &y); xSubY[x-y+1000]++; xAddY[x+y]++; } ll ans = 0; for (int i = 0; i <= 2000; ++i) { ans += c[ xSubY[i] ][2]; ans += c[ xAddY[i] ][2]; } cout << ans; return 0; }
C. Wet Shark and Flowers
题意:n个鲨鱼围成一圈1~n,每个鲨鱼有一个数,鲨鱼i的数字在范围l[i]~r[i],如果相邻数字的乘积为P或P的倍数(p为素数),则两个鲨鱼各获得1000元,求一共能获得钱的期望。
题解:分别考虑相邻的每两个就可以,对于相邻两个数,只有至少一个为p的倍数,才有可能乘积是p的倍数。对于每个鲨鱼一共有r-l+1个数字,有r/p-(l-1)/p的p的倍数。具体看代码。
#include <bits/stdc++.h> #define PI acos(-1.0) #define EXP exp(1.0) #define ESP 1E-6 #define clr(x,c) memset(x,c,sizeof(x)) typedef long long ll; using namespace std; const int N = 100005; int l[N]; int r[N]; double ans[N]; int main() { int n, p; scanf("%d%d", &n, &p); for (int i = 0; i < n; ++i) { scanf("%d%d", &l[i], &r[i]); } l[n] = l[0]; r[n] = r[0]; for (int i = 0; i < n; ++i) { double a = r[i] - l[i] + 1; double b = r[i + 1] - l[i + 1] + 1; double pa = r[i] / p - (l[i] - 1) / p; double pb = r[i + 1] / p - (l[i + 1] - 1) / p; double tmp = (pa * b + pb * a - pa * pb) / (a * b); ans[i] += tmp; ans[i + 1] += tmp; } double res = 0; for (int i = 0; i <= n; ++i) res += ans[i]; printf("%f", res * 1000); return 0; }
D. Rat Kwesh and Cheese
题意:很简单,求a1 = xyz;a2 = xzy;a3 = (xy)z;a4 = (xz)y;a5 = yxz;a6 = yzx;a7 = (yx)z;a8 = (yz)x;a9 = zxy;a10 = zyx;a11 = (zx)y;a12 = (zy)x.的最大值。(0.1 ≤ x, y, z ≤ 200.0)
题解:很容易想到求对数,但是,y^z也会很大,所以想当然的求了两次对数,也就是log(log(x^y^z))变成z*log(y)+log(log(x));但是log(x)会出现负数……(后来发现好多人都是这么做的,笑)。正解是取一次对数,然后使用long double,精度足够。
#include <bits/stdc++.h> typedef long double lld; using namespace std; const lld ESP = 1E-8; lld cal(lld x, lld y, lld z) { //return z * log(y) + log(log(x)); return log(x) * pow(y, z); } lld ca(lld x, lld y, lld z) { //return log(y * z * log(x)); return y * z * log(x); } int main() { const char* result[12] = {"x^y^z", "x^z^y", "(x^y)^z", "(x^z)^y", "y^x^z", "y^z^x", "(y^x)^z", "(y^z)^x", "z^x^y", "z^y^x", "(z^x)^y", "(z^y)^x"}; lld a[20]; lld x, y, z; cin >> x >> y >> z; a[0] = cal(x, y, z); a[1] = cal(x, z, y); a[2] = ca(x, y, z); a[3] = ca(x, z, y); a[4] = cal(y, x, z); a[5] = cal(y, z, x); a[6] = ca(y, x, z); a[7] = ca(y, z, x); a[8] = cal(z, x, y); a[9] = cal(z, y, x); a[10] = ca(z, x, y); a[11] = ca(z, y, x); lld maxn = a[0]; int res = 0; for (int i = 1; i < 12; ++i) { if (maxn < a[i] - ESP) { maxn = a[i]; res = i; } } printf("%s", result[res]); return 0; }
E. Wet Shark and Blocks
题意:n个堆,每个堆有b个数字,每一个堆取一个数字,第i个堆取一个数字做第i位的数字,构成一个n位数,求构成的数字被x除余k有多少种方案。
题解:看到这题就想到了前几天做的题http://www.cnblogs.com/wenruo/p/5153790.html 不过这个简单些,然并卵,比赛时并没有写出来……dp+矩阵快速幂
#include <bits/stdc++.h> typedef long long ll; using namespace std; int digit[10]; const ll MOD = 1000000007; typedef vector<ll> vec; typedef vector<vec> mat; mat mul(mat &A, mat &B) { mat C(A.size(), vec(B[0].size())); for (unsigned int i = 0; i < A.size(); ++i) { for (unsigned int k = 0; k < B.size(); ++k) { for (unsigned int j = 0; j < B[0].size(); ++j) { C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD; } } } return C; } mat pow(mat A, int n) { mat B(A.size(), vec(A.size())); for (unsigned int i = 0; i < A.size(); ++i) B[i][i] = 1; while (n > 0) { if (n & 1) B = mul(B, A); A = mul(A, A); n >>= 1; } return B; } /* dp[i][k] i位数 余数为k dp[i+1][(j+k*10)%x] = dp[i][k]*digit[j], 1<=j<=9 */ ll cal(int n, int x, int k) { mat f(x, vec(x)); for (int i = 0; i < x; ++i) { // 上一位余数 for (int j = 1; j <= 9; ++j) { // 首位数字 int num = (i * 10 + j) % x; // 当前余数 f[num][i] += digit[j]; } } mat v(x, vec(1)); for (int i = 1; i <= 9; ++i) v[i % x][0] += digit[i]; // dp[1][i%x][i] f = pow(f, n - 1); v = mul(f, v); return v[k][0]; } int main() { int n, b, k, x; scanf("%d%d%d%d", &n, &b, &k, &x); int val; for (int i = 0; i < n; ++i) { scanf("%d", &val); digit[val]++; } cout << cal(b, x, k); return 0; }
总体而言这次的比赛比较简单^_^