基于Pytorch的网络设计语法4
import torch.nn as nn import torch.functional as F import torch.optim as optim from collections import OrderedDict class Net4(nn.Module):# 从nn.Module 继承 def __init__(self):# 在类的初始化函数里完成曾的构建 super(Net4,self).__init__() #Sequential里面的顺序 就是前往传播的顺序 #OrderedDict 是有序字典 self.block=nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(3, 32, 3, 1, 1)), ("relu1", nn.ReLU()), ("conv2", nn.Conv2d(32, 64, 3, 1, 1)), ("relu2", nn.ReLU()) ] ) ) self.module = nn.Sequential( OrderedDict( [ ("conv3", nn.Conv2d(3, 32, 3, 1, 1)), ("relu3", nn.ReLU()) ] ) ) def forward(self,input_x):# 构建前向传播的流程 conv_out=self.block(input_x) res=conv_out.view(conv_out.size(0),-1)#拉伸处理 out =self.module(res) return out gsznet = Net4() print(gsznet) if __name__ == '__main__': print("XXXXXXXXXXXXXX")
输出的内容
C:\Users\ai\AppData\Local\Programs\Python\Python38\python.exe E:\yousan.ai-master\computer_vision\projects\classification\pytorch\simpleconv3\设计网络.py
Net4(
(block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu2): ReLU()
)
(module): Sequential(
(conv3): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu3): ReLU()
)
)
XXXXXXXXXXXXXX
进程已结束,退出代码为 0