mask-rcnn_swin-t-p4-w7_fpn_1x_coco.py 里面的内容

_base_ = [
    '../_base_/models/mask-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_instance.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'  # noqa
model = dict(
    type='MaskRCNN',
    backbone=dict(
        _delete_=True,
        type='SwinTransformer',
        embed_dims=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.,
        attn_drop_rate=0.,
        drop_path_rate=0.2,
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        with_cp=False,
        convert_weights=True,
        init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
    neck=dict(in_channels=[96, 192, 384, 768]))

max_epochs = 12
train_cfg = dict(max_epochs=max_epochs)

# learning rate
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
        end=1000),
    dict(
        type='MultiStepLR',
        begin=0,
        end=max_epochs,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]

# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    paramwise_cfg=dict(
        custom_keys={
            'absolute_pos_embed': dict(decay_mult=0.),
            'relative_position_bias_table': dict(decay_mult=0.),
            'norm': dict(decay_mult=0.)
        }),
    optimizer=dict(
        _delete_=True,
        type='AdamW',
        lr=0.0001,
        betas=(0.9, 0.999),
        weight_decay=0.05))

  

posted @ 2023-11-16 10:25  wenluderen  阅读(30)  评论(0编辑  收藏  举报