C++B树的实现
B树的实现
今天我们就来实现以下B树,B树有什么特点那?我们来列举一下
- 每个非叶子节点中存放若干关键字数据,并且有若干指向儿子节点的指针。指针数目=关键字数目+1
- 根节点有最少1个,最多m-1个关键字,最少2个,最多m个子节点。
- 非根节点最少有m/2,最多m-1个关键字
- 每个节点中的关键字从左到右以非降序排列
- 每个关键字均不小于其左子节点的关键字,不大于其右子节点的所有关键字
- 每个叶子节点都具有相同的深度
B树的节点的增加
我们还是通过1-25个数的增加,来探索一下,B树的增加节点有什么规律,并写出代码。
首先我们定义出来我们B树的结构,如下:
#define DEGREE 3
typedef int KEY_VALUE;
typedef struct _BTREE_NODE
{
KEY_VALUE* keys;
struct _BTREE_NODE** Childrens;
int num;
int leaf;
}BTREE_NODE,*PBTREE_NODE;
typedef struct _BTREE
{
BTREE_NODE* root;
int t;
};
我们来看一下B树1-20个数字的增加的图片
1-5
6-10
11-15
16-20
我们首先需要创建一个根节点:
BTREE_NODE* btree_create_node(int t, int leaf) {
BTREE_NODE* node = (BTREE_NODE*)calloc(1, sizeof(BTREE_NODE));
if (node == NULL) assert(0);
node->leaf = leaf;
node->keys = (KEY_VALUE*)calloc(1, (2 * t - 1) * sizeof(KEY_VALUE));
node->Childrens = (BTREE_NODE**)calloc(1, (2 * t) * sizeof(BTREE_NODE*));
node->num = 0;
return node;
}
//创建根节点
void btree_create(BTREE*T,int t)
{
T->t = t;
PBTREE_NODE x = btree_create_node(t, 1);
T->root = x;
}
现在就写一下我们插入的代码
BTREE_NODE* btree_create_node(int t, int leaf) {
BTREE_NODE* node = (BTREE_NODE*)calloc(1, sizeof(BTREE_NODE));
if (node == NULL) assert(0);
node->leaf = leaf;
node->keys = (KEY_VALUE*)calloc(1, (2 * t - 1) * sizeof(KEY_VALUE));
node->Childrens = (BTREE_NODE**)calloc(1, (2 * t) * sizeof(BTREE_NODE*));
node->num = 0;
return node;
}
//节点分裂
void btree_split_child(BTREE* T,BTREE_NODE* x,int i)
{
int t = T->t;
BTREE_NODE* y = x->Childrens[i];
BTREE_NODE* z = btree_create_node(t, y->leaf);
z->num = t - 1;
int j = 0;
for (j=0;j<t-1;j++)
{
z->keys[j] = y->keys[j + t];
}
if (y->leaf==0)
{
for (j=0;j<t;j++)
{
z->Childrens[j] = y->Childrens[j + t];
}
}
y->num = t - 1;
for (j=x->num;j>=i+1;j--)
{
x->Childrens[j + 1] = x->Childrens[j];
}
x->Childrens[i + 1] = z;
for(j=x->num-1;j>=i;j--)
{
x->keys[j + 1] = x->keys[j];
}
x->keys[i] = y->keys[t - 1];
x->num += 1;
}
//创建节点
void btree_create(BTREE*T,int t)
{
T->t = t;
PBTREE_NODE x = btree_create_node(t, 1);
T->root = x;
}
void btree_insert_notfull(BTREE*T,BTREE_NODE *x,KEY_VALUE k)
{
//获取节点数量,从0开始减1
int i = x->num-1;
//只有1个叶子节点
if (x->leaf==1)
{
while (i>=0&&x->keys[i]>k)
{
x->keys[i + 1] = x->keys[i];
i--;
}
//赋值
x->keys[i + 1] = k;
x->num += 1;
}else
{
//找到应该插入的叶子节点
while (i >= 0 && x->keys[i] > k) i--;
//是否已经满了5个节点
if (x->Childrens[i+1]->num==((2*T->t))-1)
{
btree_split_child(T, x, i + 1);
if (k>x->keys[i+1])
{
i++;
}
}
btree_insert_notfull(T, x->Childrens[i + 1], k);
}
}
void btree_insert(BTREE *T ,KEY_VALUE key)
{
//获取头节点
BTREE_NODE* r = T->root;
//如果满节点就要进行这里的操作
if (r->num==2*T->t-1)
{
BTREE_NODE* node = btree_create_node(T->t, 0);
T->root = node;
node->Childrens[0] = r;
btree_split_child(T, node, 0);
int i = 0;
if (node->keys[0] < key) i++;
btree_insert_notfull(T, node->Childrens[i], key);
}
else
{
//如果没有满就要进行这里的操作
btree_insert_notfull(T, r, key);
}
}
B树节点的删除
我们还是看一下是如何删除的示意图,然后再写代码。
这里主要讨论一下删除的几种情况,
B树删除的代码
//释放节点
void btree_destory_node(BTREE_NODE* node)
{
if (node == nullptr)
{
return;
}
free(node->Childrens);
free(node->keys);
free(node);
}
void btree_merge(BTREE* T, BTREE_NODE* node, int idx)
{
BTREE_NODE* left = node->Childrens[idx];
BTREE_NODE* right = node->Childrens[idx + 1];
int i = 0;
left->keys[T->t - 1] = node->keys[idx];
//开始数据的合并
for (i = 0; i < T->t - 1; i++)
{
left->keys[T->t + 1] = right->keys[i];
}
if (!left->leaf)
{
for (i = 0; i < T->t; i++)
{
left->Childrens[T->t + 1] = right->Childrens[i];
}
}
left->num += T->t;
//合并完成摧毁节点
btree_destory_node(right);
//node
for (i = idx + 1; i < node->num; i++)
{
node->keys[i - 1] = node->keys[i];
node->Childrens[i] = node->Childrens[i + 1];
}
node->Childrens[i + 1] = NULL;
node->num -= 1;
if (node->num == 0)
{
T->root = left;
btree_destory_node(node);
}
}
void btree_delete_key(BTREE* T, BTREE_NODE* node, KEY_VALUE key)
{
//如果是空节点,直接返回
if (node == nullptr)
{
return;
}
int idx = 0, i;
//获取key所在的位置
while (idx<node->num && key>node->keys[idx])
{
idx++;
}
if (idx < node->num && key == node->keys[idx])
{
if (node->leaf)
{
//如果是叶子节点,直接删除
for (i = idx; i < node->num - 1; i++)
{
node->keys[i] = node->keys[i + 1];
}
node->keys[node->num - 1] = 0;
node->num--;
//如果是根节点的情况
if (node->num == 0)
{
free(node);
T->root = nullptr;
}
return;
}//直接删除
else if (node->Childrens[idx]->num >= T->t)
{
BTREE_NODE* left = node->Childrens[idx];
node->keys[idx] = left->keys[left->num - 1];
btree_delete_key(T, left, left->keys[left->num - 1]);
}//直接删除
else if (node->Childrens[idx + 1]->num >= T->t)
{
BTREE_NODE* right = node->Childrens[idx + 1];
node->keys[idx] = right->keys[0];
btree_delete_key(T, right, right->keys[0]);
}
else {
//如果都不是,说明是左右孩子节点都是T-1个关键字
btree_merge(T, node, idx);
btree_delete_key(T, node->Childrens[idx], key);
}
}
else
{
BTREE_NODE* child = node->Childrens[idx];
if (child == NULL)
{
printf("Can\'t del key=%d\n", key);
return;
}//子节点的数目刚好等于2
if (child->num == T->t - 1)
{
BTREE_NODE* left = nullptr;
BTREE_NODE* right = nullptr;
if (idx - 1 >= 0)
{
left = node->Childrens[idx - 1];
}
if (idx + 1 <= node->num)
{
right = node->Childrens[idx + 1];
}
//如果左右节点任何一个都可以借用节点
if ((left && left->num >= T->t) || (right && right->num >= T->t))
{
int richR = 0;
if (right)
{
richR = 1;
}
if (left && right)
{
richR = (right->num > left->num) ? 1 : 0;
}
//从右借用节点
if (right && right->num >= T->t && richR)
{
child->keys[child->num] = node->keys[idx];
child->Childrens[child->num + 1] = right->Childrens[0];
child->num++;
node->keys[idx] = right->keys[0];
//调整右边的节点
for (i = 0; i < right->num - 1; i++)
{
right->keys[i] = right->keys[i + 1];
right->Childrens[i] = right->Childrens[i + 1];
}
right->keys[right->num - 1] = 0;
right->Childrens[right->num - 1] = right->Childrens[right->num];
right->Childrens[right->num] = NULL;
right->num--;
}
else
{
//从左借节点
for (i = child->num; i > 0; i--)
{
child->keys[i] = child->keys[i - 1];
child->Childrens[i + 1] = child->Childrens[i];
}
child->Childrens[1] = child->Childrens[0];
child->Childrens[0] = left->Childrens[left->num];
child->keys[0] = node->keys[idx - 1];
child->num++;
node->keys[idx - 1] = left->keys[left->num - 1];
left->keys[left->num - 1] = 0;
left->Childrens[left->num] = NULL;
left->num--;
}
}
else if ((!left) || (left->num == T->t - 1) && (!right) || (right->num == T->t - 1))
{
if (left&&left->num==T->t-1)
{
btree_merge(T, node, idx - 1);
child = left;
}else if(right&&right->num==T->t-1)
{
btree_merge(T, node, idx);
}
}
btree_delete_key(T, child, key);
}
}
}
int btree_delete(BTREE* T, KEY_VALUE key)
{
if (!T->root)
{
return -1;
}
btree_delete_key(T, T->root, key);
return 0;
}
推荐一个零声学院免费教程,个人觉得老师讲得不错,
分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis,
fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,
TCP/IP,协程,DPDK等技术内容,点击立即学习:
服务器
音视频
dpdk
Linux内核