【转】OpenCV实现KNN算法
K Nearest Neighbors
这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值。这种方法有时候被称作“基于样本的学习”,即为了预测,我们对于给定的输入搜索最近的已知其相应的特征向量。
class CvKNearest : public CvStatModel //继承自ML库中的统计模型基类 { public: CvKNearest();//无参构造函数 virtual ~CvKNearest(); //虚函数定义 CvKNearest( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx=0, bool _is_regression=false, int max_k=32 );//有参构造函数 virtual bool train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx=0, bool is_regression=false, int _max_k=32, bool _update_base=false ); virtual float find_nearest( const CvMat* _samples, int k, CvMat* results, const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const; virtual void clear(); int get_max_k() const; int get_var_count() const; int get_sample_count() const; bool is_regression() const; protected: ... };
CvKNearest::train
训练KNN模型
bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx=0, bool is_regression= false , int _max_k=32, bool _update_base= false ); |
这个类的方法训练K近邻模型。它遵循一个一般训练方法约定的限制:只支持CV_ROW_SAMPLE数据格式,输入向量必须都是有序的,而输出可以 是 无序的(当is_regression=false),可以是有序的(is_regression=true)。并且变量子集和省略度量是不被支持的。
参数_max_k 指定了最大邻居的个数,它将被传给方法find_nearest。 参数 _update_base 指定模型是由原来的数据训练(_update_base=false),还是被新训练数据更新后再训练(_update_base=true)。在后一种情况下_max_k 不能大于原值, 否则它会被忽略.
CvKNearest::find_nearest
寻找输入向量的最近邻
float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* results=0, const float ** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const ; |
对每个输入向量(表示为matrix_sample的每一行),该方法找到k(k≤get_max_k() )个最近邻。在回归中,预测结果将是指定向量的近邻的响应的均值。在分类中,类别将由投票决定。
对传统分类和回归预测来说,该方法可以有选择的返回近邻向量本身的指针(neighbors, array of k*_samples->rows pointers),它们相对应的输出值(neighbor_responses, a vector of k*_samples->rows elements) ,和输入向量与近邻之间的距离(dist, also a vector of k*_samples->rows elements)。
对每个输入向量来说,近邻将按照它们到该向量的距离排序。
对单个输入向量,所有的输出矩阵是可选的,而且预测值将由该方法返回。
例程:使用kNN进行2维样本集的分类,样本集的分布为混合高斯分布
#include "ml.h" #include "highgui.h" int main( int argc, char** argv ) { const int K = 10; int i, j, k, accuracy; float response; int train_sample_count = 100; CvRNG rng_state = cvRNG(-1); CvMat* trainData = cvCreateMat( train_sample_count, 2, CV_32FC1 ); CvMat* trainClasses = cvCreateMat( train_sample_count, 1, CV_32FC1 ); IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 ); float _sample[2]; CvMat sample = cvMat( 1, 2, CV_32FC1, _sample ); cvZero( img ); CvMat trainData1, trainData2, trainClasses1, trainClasses2; // form the training samples cvGetRows( trainData, &trainData1, 0, train_sample_count/2 ); cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(200,200), cvScalar(50,50) ); cvGetRows( trainData, &trainData2, train_sample_count/2, train_sample_count ); cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(300,300), cvScalar(50,50) ); cvGetRows( trainClasses, &trainClasses1, 0, train_sample_count/2 ); cvSet( &trainClasses1, cvScalar(1) ); cvGetRows( trainClasses, &trainClasses2, train_sample_count/2, train_sample_count ); cvSet( &trainClasses2, cvScalar(2) ); // learn classifier CvKNearest knn( trainData, trainClasses, 0, false, K ); CvMat* nearests = cvCreateMat( 1, K, CV_32FC1); for( i = 0; i < img->height; i++ ) { for( j = 0; j < img->width; j++ ) { sample.data.fl[0] = (float)j; sample.data.fl[1] = (float)i; // estimates the response and get the neighbors' labels response = knn.find_nearest(&sample,K,0,0,nearests,0); // compute the number of neighbors representing the majority for( k = 0, accuracy = 0; k < K; k++ ) { if( nearests->data.fl[k] == response) accuracy++; } // highlight the pixel depending on the accuracy (or confidence) cvSet2D( img, i, j, response == 1 ? (accuracy > 5 ? CV_RGB(180,0,0) : CV_RGB(180,120,0)) : (accuracy > 5 ? CV_RGB(0,180,0) : CV_RGB(120,120,0)) ); } } // display the original training samples for( i = 0; i < train_sample_count/2; i++ ) { CvPoint pt; pt.x = cvRound(trainData1.data.fl[i*2]); pt.y = cvRound(trainData1.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(255,0,0), CV_FILLED ); pt.x = cvRound(trainData2.data.fl[i*2]); pt.y = cvRound(trainData2.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(0,255,0), CV_FILLED ); } cvNamedWindow( "classifier result", 1 ); cvShowImage( "classifier result", img ); cvWaitKey(0); cvReleaseMat( &trainClasses ); cvReleaseMat( &trainData ); return 0; }
结果: